Kudzidza kwakadzama kwakazviisa serimwe remapazi ane mukurumbira mumunda yehungwaru hwekugadzira uye kugadzirwa kwemutauro wechisikigo mumakore achangopfuura. Iyi nzira yekudzidza yemuchina yakavakirwa pahombe-yakakura artificial neural network, inokwanisa kudzidza uye kunzwisisa mapatani akaomarara mumaseti makuru edata. Muchikamu chino, tichaongorora zvakadzama kuti kudzidza kwakadzama chii, kuti kunoshanda sei, uye ndeapi mamwe maapplication ayo anonyanya kukosha. parizvino.
1. Nhanganyaya yeKudzidza Kwakadzika: Tsanangudzo uye mamiriro
Kudzidza kwakadzama ibazi remunda we ungwaru hwekugadzira iyo yave chishandiso chine simba chekugadzirisa matambudziko akaomarara. Izvo zvakavakirwa pane zano rekugadzira muchina kudzidza algorithms uye modhi dzinogona kudzidza nekumiririra ruzivo nenzira yakafanana nemabatiro anoita uropi hwemunhu. Nekudzidza kwakadzama, zvinokwanisika kudzidzisa masisitimu kuti azive mapatani, kufanofembera, uye kuita sarudzo zvine mwero wepamusoro.
Mumamiriro ezvinhu azvino, kudzidza kwakadzama kwakaratidza kuti kunonyanya kushanda munzvimbo dzakadai sekuona komputa uye kugadzirwa kwemutauro wechisikigo. Nekuda kwealgorithms senge convolutional neural network uye shanduko yemitauro modhi, kufambira mberi kukuru kwakaitwa mumabasa akadai sekuona chinhu mumifananidzo, kushandura nemuchina, uye kugadzira zvinyorwa.
Kuti unzwisise uye ushandise kudzidza kwakadzama, unofanirwa kujairana neakakosha pfungwa senge artificial neural network, activation mabasa, optimization algorithms, uye backpropagation. Uye zvakare, zvakakosha kuziva akasiyana neural network architecture aripo, senge convolutional neural network uye inodzokororwa neural network. Kuburikidza nezvidzidzo, zvinyorwa, uye mienzaniso inoshanda, unogona kudzidza kushandisa zvakadzika maturusi ekudzidza nemaraibhurari akadai seTensorFlow nePyTorch kugadzirisa matambudziko chaiwo.
2. Kudzidza Muchina vs. Kudzidza Kwakadzika: Misiyano Yakakosha
Kudzidza kwemichina uye kudzidza kwakadzama mazwi maviri anowanzo shandiswa zvakasiyana pakutaura nezvehungwaru hwekugadzira uye kuongorora data. Nekudaro, kunyangwe ese ari maviri akavakirwa papfungwa yekudzidzisa michina kudzidza yakazvimirira, pane misiyano mikuru pakati pavo.
Imwe yemisiyano mikuru iri mukudzika kweiyo network yetsinga inoshandiswa mune imwe neimwe nzira. Mukudzidza kwemichina, mashoma akaomarara neural network uye zvimiro zvisina kudzika zvinoshandiswa kugadzirisa nekudzidza kubva kudata. Kune rimwe divi, mukudzidza kwakadzama, zvakanyanya kuomarara uye zvakadzama neural network anoshandiswa, zvichibvumira kudzidza kwakadzama uye kugona kukuru kuziva mapatani uye maficha mune data.
Imwe misiyano yakakosha pakati pemaitiro ese ari maviri huwandu hwe data inodiwa. yekudzidziswa. Mukudzidza kwemichina, mhedzisiro inogamuchirwa inogona kuwanikwa nediki data seti, nepo mukudzidza kwakadzama, huwandu hukuru hwe data hunodiwa kuti uwane mibairo yakakwana. Izvi zvinodaro nekuti yakadzika neural network inokwanisa kudzidza yakanyanya kuomarara inomiririra yedata, asi inoda nhamba yakakura yemuenzaniso kuita kudaro.
Muchidimbu, kunyangwe kudzidza kwemuchina uye kudzidza kwakadzama kugovera chirevo chemichina yekudzidzisa kuti idzidze yakazvimirira, inosiyana mukuoma kweneural network inoshandiswa uye huwandu hwe data inodiwa pakudzidziswa. Kudzidza kwakadzama kunopa nzira yakanyanyisa uye yakakurisa, inokwanisa kuziva mamwe maitiro akaomarara uye maficha mu data, asi pamutengo wekuda makuru e data seti kudzidzisa. Kune rimwe divi, kudzidza kwemichina kunonyanya kukodzera kana data seti idiki kana kuomarara kwedata hakuna kukwira.
3. Neural Network Architectures muKudzidza Kwakadzika
Iwo akakosha pakuvandudzwa kwezvinowedzera kuoma uye nemazvo ekugadzira njere masisitimu. Aya mavakirwo anotsanangura chimiro uye kurongeka kweneural network, zvichibvumira kugadziridzwa kwakanaka kwehuwandu hwedata uye kubviswa kwezvinhu zvinoenderana. Pazasi pane matatu ekuvaka anoshandiswa zvakanyanya mukudzidza kwakadzama.
Yekutanga dhizaini yekuvaka ndeye Convolutional Neural Network (CNN). Ichi chivakwa chinonyanya kushandiswa mumabasa ekuona komputa sekuziva mufananidzo uye kuona chinhu. Dhizaini yaro yakavakirwa pane convolutional layers inoshandisa mafirita kuburitsa maficha emunharaunda kubva kumifananidzo. Zvinhu izvi zvinosanganiswa kuti zvigadzire chimiro chepamusoro-soro chemufananidzo, iyo inobva yashandiswa kuita basa chairo.
- Hunhu hunokosha hweCNNs:
- Convolutional layers kuti ishandiswe kutorwa kwechinhu.
- Kubatanidza masaizi ekudzikisa saizi yedata.
- Zvizere zvakabatanidzwa zvikamu kuti uite basa chairo.
Imwe dhizaini yakakodzera ndeye Recurrent Neural Network (RNN). Kusiyana neCNNs, maRNN anoshandiswa mumabasa akatevedzana akadai semutauro wechisikigo kugadzirisa uye kuzivikanwa kwekutaura. Dhizaini yayo inobvumidza iwe kutora mukana weruzivo rwemamiriro ezvinhu kubva kune yakapfuura kutevedzana kuita sarudzo mune yazvino. RNNs inoratidzira inodzokororwa kubatana pakati peneural mauniti, ichivapa ndangariro uye kugona kuenzanisira kwenguva refu kutsamira.
- Hunhu hunokosha hweRNNs:
- Recurrent connections kutora ruzivo rwemamiriro ezvinhu.
- Memory zvikamu zvekuchengetedza kwenguva refu kwemashoko.
- Flexibility kubata kutevedzana kwehurefu hwakasiyana.
Yechitatu dhizaini yekusimbisa ndeye Generative Adversarial Neural Network (GAN). MaGAN anoshandiswa mumatambudziko ekugadzirwa kwezvinhu, sekugadzira mifananidzo uye zvinyorwa. Iwo anosanganisira maviri neural network, jenareta uye kusarura, kukwikwidza mumutambo we zero-sum. Iyo jenareta inoedza kuburitsa data rechokwadi, nepo musarura achiedza kusiyanisa pakati peyakagadzirwa uye data chaiyo. Makwikwi aya anotyaira kudzidza uye kugadzira zvemhando yepamusoro zvemukati.
- Hunhu hunokosha hweGANs:
- Kugadzira network kugadzira zvemukati realistic.
- Discriminator network kusiyanisa pakati pezvakagadzirwa uye data chaiyo.
- Makwikwi pakati pemambure ekusimudzira kudzidza.
4. Kudzidza Algorithms muKudzidza Kwakadzika
Mumunda wekudzidza kwakadzama, kudzidza algorithms chikamu chakakosha chekugadzirisa matambudziko akaomarara. Aya maalgorithms akavakirwa pane artificial neural network akagadzirirwa kutevedzera maitiro ehuropi hwemunhu mukuita kwayo kudzidza. Vanogonesa michina kuona mapatani uye kudzidza yakazvimirira, ichivaita chishandiso chine simba munzvimbo dzakasiyana senge komputa kuona, kugadzirwa kwemutauro wechisikigo, uye marobhoti.
Kune akati wandei marudzi ekudzidza algorithms anoshandiswa mukudzidza kwakadzama, pakati pawo anotevera anobuda pachena:
- Convolutional Neural Networks (CNN): Aya maalgorithms akagadzirirwa zvakanyanya kugadzirisa data negridi chimiro, senge mifananidzo. CNNs inokwanisa kuziva uye kuisa zvinhu mumifananidzo, kutora zvimiro zvepasi-pasi uye nekuzvibatanidza pazvikamu zvepamusoro kuti vawane mumiriri wakakwana.
- Recurrent Neural Networks (RNN): Aya maalgorithms anoshandiswa mumabasa anosanganisira kutevedzana, senge kuziva inzwi kana kushandura otomatiki. RNNs inokwanisa kugadzirisa data sequentially uye kuchengetedza ndangariro yemukati inovabvumira kuti vanzwisise mamiriro eruzivo.
- Generative Adversarial Neural Networks (GAN): Aya maalgorithms anoshandiswa kugadzira data idzva rechokwadi kubva kune yekudzidziswa data set. MaGAN anoumbwa neneural network mbiri dzinokwikwidzana: jenareta inoedza kugadzira masampuli ekugadzira uye sarura inoedza kusiyanisa pakati pemasampuli chaiwo uye ekugadzira. Makwikwi aya anoramba achivandudza mhando yemasampuli anogadzirwa.
Kudzidza nekunzwisisa izvi zvakakosha kuti ukwanise kuzvishandisa zvinobudirira mumatambudziko akasiyana. Kune akawanda tutorials uye zviwanikwa zviripo online kuti uwane ruzivo rwunodiwa. Pamusoro pezvo, kune maturusi esoftware seTensorFlow, PyTorch, uye Keras anoita kugadzira uye kutumira . Nekudzidza uye kuita, zvinokwanisika kushandisa aya algorithms kugadzirisa matambudziko akaomarara uye kubatanidza kugona kwakazara kwekudzidza kwakadzama.
5. Mhando dzeKudzidza Kwakadzika: Kutariswa, Kusatariswa uye Kusimbisa
Kudzidza kwakadzama kunogona kuiswa mumhando mitatu mikuru: inotariswa, isina anotariswa, uye yekusimbisa. Imwe neimwe yeidzi nzira ine hunhu hwayo uye mashandisirwo mumunda wehungwaru hwekugadzira uye kudzidza kwemichina.
Mukudzidza kwakadzama kwakatariswa, modhi inodzidziswa ichishandisa mienzaniso yakanyorwa, i.e. data rekuisa pamwe chete nemhinduro dzinodiwa. Chinangwa ndechekuti modhi idzidze kumepu data rekuisa kune izvo zvinobuda. Iyi nzira inobatsira kana iwe uine seti ye data rakanyorwa uye uchida kuita chikamu kana regression basa.
Kudzidza kwakadzama kusingatarisirwi, kune rumwe rutivi, kunotarisa pakutsvaga mapatani akavanzika kana zvimiro mu data rekuisa pasina kushandisa mavara. Muchiitiko ichi, muenzaniso hauna ruzivo pamusoro pemhinduro dzakarurama uye chinangwa chayo ndechokuwana chimiro chemukati che data. Rudzi urwu rwekudzidza runobatsira pakuita mabasa akadai sekubatanidza, kuderedza chiyero, kana kugadzira data rekugadzira.
6. Maitiro Ekugadzirisa muKudzidza Kwakadzika
Kudzidza kwakadzama mumunda wehungwaru hwekugadzira kwakaratidza kuve chishandiso chine simba chekugadzirisa matambudziko akaomarara munzvimbo dzakadai sekuona komputa, kugadzirwa kwemutauro wechisikigo, uye marobhoti. Nekudaro, kuti uwane zvakanyanya kubva kune zvakadzama modhi yekudzidza, zvakakosha kushandisa kwakaringana maitiro ekugadzirisa.
Imwe yemaitiro akanyanya kukosha mukudzika kwekudzidza optimization ndiko kushandiswa kweakakodzera activation mabasa. Activation mabasa anoshandiswa neartificial neurons kuunza kusawirirana mumhando dzekudzidza dzakadzika. Mamwe eakajairika activation mabasa sigmoid activation basa, ReLU activation basa, uye softmax activation basa. Zvakakosha kusarudza yakakodzera activation basa zvichienderana nehunhu hwedambudziko riri kutariswa.
Imwe nzira yakakosha mukugadzirisa zvakadzama kudzidza ndeyekugara. Regularization inobatsira kudzivirira kuwandisa, izvo zvinoitika kana modhi yadarika iyo data yekudzidziswa uye isingaite zvakanaka kune nyowani data. Mamwe maitiro akakurumbira ekugadzirisa maitiro anosanganisira L1 uye L2 kugara, kuchekerera, uye kuwedzera data. Aya matekiniki anobatsira kudzora kuoma kweiyo modhi uye nekuvandudza kugona kwayo kuzere kune data nyowani nenzira kwayo.
7. Zvishandiso zvinoshanda zveKudzidza Kwakadzika
Kudzidza Kwakadzika, kunozivikanwawo seKudzidza Kwakadzika, inzvimbo yekudzidza muArtificial Intelligence iyo yakaona kukura nekukurumidza mumakore achangopfuura. Iyi nzira yakavakirwa pakudzidzisa artificial neural network kudzidza nekuita mabasa akaomarara nekugadzirisa huwandu hukuru hwe data. Muchikamu chino, mamwe ari kuvandudza maindasitiri akasiyana achaongororwa.
Imwe yeanonyanya kuzivikanwa mashandisirwo eDeep Kudzidza iri mumunda wekuona komputa. Nekushandiswa kwe convolutional neural network, zvinokwanisika kuita mabasa akadai sekuzivikanwa kwechinhu, kuona chiso, kuongororwa kwemifananidzo yekurapa, nezvimwe zvakawanda. Uyezve, Kudzidza Kwakadzika kwakaratidza kuve kunoshanda mukugadzira zvinoonekwa, sekugadzira mifananidzo yechokwadi kana kunyange kugadzira mavhidhiyo emanyepo akadzika.
Imwe nharaunda iyo Kudzidza Kwakadzika kuri kuita zvakakosha kuri mukugadzirisa mutauro wechisikigo. Recurrent neural network uye mamodheru ekutarisisa anoshandiswa kushandura muchina, kuongorora manzwiro, kugadzira zvinyorwa, uye hungwaru chatbots. Aya maapplication ari kushandura mabatiro atinoita nemichina uye nekuvandudza kutaurirana pakati pevanhu nemakomputa munzvimbo dzakasiyana siyana, senge. mabatiro evatengi uye rubatsiro rwekurapa.
8. Zvinetso uye zvisingakwanisi muKudzidza Kwakadzika
Kudzidza Kwakadzika, kunozivikanwawo seKudzidza Kwakadzika, ibazi rehungwaru hwekugadzira rakaratidza mhedzisiro inovimbisa munzvimbo dzakasiyana siyana. Nekudaro, kunyangwe kufambira mberi kwayo, inotarisanawo nematambudziko akakosha uye zvipingamupinyi izvo zvinofanirwa kugadziriswa kuti zvishandiswe zvakanyanya.
Rimwe rematambudziko akanyanya kukosha kudiwa kwehuwandu hukuru hwe data yekudzidziswa. Mamodheru eDzidzo yakadzama inoda maseti makuru edata kuitira kuti udzidze maitiro akaomarara uye kuita fungidziro chaiyo. Kuwana uye kunyora mavhoriyamu makuru edata kunogona kudhura uye kutora nguva. Uyezve, kusaenzana mukugoverwa kwedheta re data kunogona kukanganisa kushanda kwemuenzaniso.
Imwe dambudziko isarudzo yakakodzera yemuenzaniso wekuvaka. Kune akawanda Deep Kudzidza zvivakwa zviripo, senge convolutional neural network (CNN) uye inodzokororwa neural network (RNN). Chivakwa chega chega chine simba rayo uye kushaya simba, uye kusarudza iyo yakanyatsokodzera kune rimwe basa kunogona kuve kwakaoma. Pamusoro pezvo, zvigadziriso zvemodhi hyperparameter, senge chiyero chekudzidza uye yakavanzika layer saizi, inogona kuve nemhedzisiro yakakura pakuita modhi.
9. Kufambira mberi kwazvino uye maitiro muKudzidza Kwakadzika
Muchikamu chino, tichaongorora kufambira mberi uye mafambiro azvino mumunda weDeep Learning, bazi reArtificial Intelligence iro rakaona kukura kwakanyanya mumakore achangopfuura. Kudzidza Kwakadzika kwakavakirwa paiyo artificial neural network modhi uye ine maapplication muakasiyana maindasitiri, kubva pakuona komputa kusvika kune yakasikwa mutauro kugadzirisa.
Imwe yeanonyanya kuzivikanwa kufambira mberi mumunda weDeep Kudzidza kugona kweneural network kuona uye kugadzira multimedia zvirimo. Nekuda kwekuvandudzwa kwemamodheru akadai seanogadzira adversarial network (GANs), zvave kugoneka kugadzira mifananidzo nemavhidhiyo echokwadi ayo aimbove akaoma kusiyanisa kubva kune anogadzirwa nevanhu. Iyi tekinoroji ine maapplication muindasitiri yevaraidzo, sekugadzira yakakosha mhedzisiro mumabhaisikopo, pamwe neiyo vhidhiyo dhizaini dhizaini uye simulation yezvakatipoteredza nharaunda.
Imwe muitiro wakakosha muKudzidza Kwakadzika inotarisa pakududzira kwemuenzaniso uye kutsanangura kwemigumisiro. Sezvo maAI maapplication achiwanda muhupenyu hwezuva nezuva, zvakakosha kuti unzwisise kuti sarudzo dzinoitwa sei uye kuti ndezvipi zvinhu zvinozvikanganisa. Kufambira mberi kwazvino kunonangana nekuvandudzwa kwezvishandiso uye matekiniki ekunzwisisa nekutsanangura sarudzo dzakaitwa neDeep Learning modhi. Izvi zvinonyanya kukosha munzvimbo dzakaita semushonga, uko kududzirwa kwemhedzisiro kunogona kukanganisa kuongororwa uye sarudzo dzekurapa.
10. Zvishandiso zvakakurumbira uye maraibhurari muKudzidza Kwakadzika
Mumunda weKudzidza Kwakadzika, kune nhamba huru yezvishandiso zvakakurumbira uye maraibhurari anotipa hunyanzvi hunodiwa hwekugadzira mamodheru. zvinobudirira uye inoshanda. Zvishandiso izvi nemaraibhurari zvinotitendera kuita zvakadzika kudzidza algorithms, kuita data preprocessing mabasa, kudzidzisa uye kuongorora mamodheru, pakati pezvimwe zvakakosha mashandiro.
Pakati pezvishandiso zvinonyanya kukosha ndeye TensorFlow, yakavhurwa sosi raibhurari yakagadziriswa neGoogle iyo zvinotipa zvakasiyana-siyana zvezvishandiso zvekushandiswa kwemhando dzekudzidza dzakadzika. TensorFlow inotipa iri nyore kushandisa interface inotitendera kugadzira uye kudzidzisa neural network ye nzira inoshanda, kunze kwekuve nehuwandu hwehupfumi uye zvinyorwa zviripo zvinofambisa kushandiswa kwayo.
Chimwe chishandiso chakakurumbira ndiKeras, raibhurari yepamusoro-soro yakanyorwa muPython inotipa iri nyore uye ine simba API yekugadzira nekudzidzisa mamodheru ekudzidza akadzama. Keras inoratidzirwa nekureruka kwayo kwekushandisa uye kugona kwayo kusanganisa nemamwe maraibhurari akadai seTensorFlow, iyo inotibvumira kutora mukana wesimba rekupedzisira pasina kurasikirwa nekureruka uye kuchinjika kweKeras. Uye zvakare, Keras inotipa huwandu hukuru hweakafanotsanangurwa akaturikidzana uye activation mabasa, izvo zvinoita kuti zvive nyore kuita akasiyana neural network architecture.
Chekupedzisira, isu hatigone kutadza kutaura PyTorch, raibhurari yekudzidza yemuchina yakagadziridzwa neFacebook yave kuwedzera mukurumbira mumunda wekudzidza kwakadzama. PyTorch inotipa intuitive uye ine simba interface inotibvumira kuvaka mhando munguva chaiyo, izvo zvinoita kuti kuedza uye kugadzirisa maitiro kuve nyore. Mukuwedzera, PyTorch ine nhamba huru yemamodule akafanotsanangurwa uye mabasa anotibvumira kukurumidza kuita akasiyana neural network architecture.
11. Hunhu uye mutoro muKudzidza Kwakadzika
Kudzidza kwakadzama ibazi reungwaru hwekugadzira rakaratidza kugona kukuru mukugadzirisa matambudziko akasiyana siyana. Zvisinei, kushandiswa kwayo kunomutsawo mibvunzo yakakosha yetsika uye yemutoro. Muchikamu chino, tichaongorora zvimwe zvezvinhu zvakakosha zvine chekuita nehunhu uye mutoro mukudzidza kwakadzama.
Chimwe chinhu chikuru chekufunga nezvacho ndechekurerekera mu data rinoshandiswa kudzidzisa mamodheru ekudzidza akadzama. Sezvo aya mamodheru achidzidza kubva munhoroondo dzenhoroondo, kana data iri pasi rakarerekera kana riine rusaruro, modhi yacho ingangoratidza izvi mumaitiro nemasarudzo ayo. Izvo zvakakosha, saka, kuita ongororo yakakwana yedata rekudzidzisa uye kutora matanho akakodzera ekudzikisa chero zvingave zvakarerekera.
Chimwe chinhu chakakosha chetsika kuve pachena uye kutsanangurwa kwemhando dzekudzidza kwakadzama. Mienzaniso yekudzidza yakadzama inowanzoonekwa se "mabhokisi matema" nekuda kwekuoma kwadzo uye kushaikwa kwekubuditsa pachena kuti vanosvika sei pasarudzo dzavo. Izvi zvinogona kusimudza nyaya dzemhosva kana sarudzo dzakakosha dzichiitwa zvichienderana nemhedzisiro yemhando idzi. Zvakakosha kukudziridza matekiniki nemidziyo inotibvumira kunzwisisa nekutsanangura kufunga kuri seri kwesarudzo dzakaitwa nemhando dzekudzidza dzakadzama.
12. Ramangwana reKudzidza Kwakadzika: Maonero uye zvinotarisirwa
Kudzidza kwakadzama kwakasandura nzira iyo michina inogona kudzidza nekuita mabasa akaomarara sekuziva kutaura, kuona komputa, uye kugadzirisa mutauro wechisikigo. Sezvo tekinoroji iyi ichiramba ichishanduka, mibvunzo inomuka nezveramangwana rayo uye tarisiro yatingave nayo. Mupfungwa iyi, pane akati wandei anonakidza maonero ekufunga.
Chimwe chetariro huru yeramangwana rekudzidza kwakadzama ndiko kushandiswa kwayo munzvimbo dzakadai semushonga, uko tekinoroji iyi inogona kushandiswa kuongororwa uye kurapwa kwezvirwere. Iko kugona kweyakadzika neural network yekuongorora yakawanda data yekurapa uye kuona yakavanzika mapatani kunogona kubatsira kuvandudza iko kurongeka kwekuongororwa kwekurapa uye kugadzirisa kurapa kwevarwere.
Imwe tarisiro inofadza ndeyekushanda kwekudzidza kwakadzama mumunda wemarobhoti. Kudzidzisa marobhoti ane akadzika neural network kwaigona kuvabvumira kuti vawane hunyanzvi hwakaoma uye kujairana nekuchinja mamiriro. Semuenzaniso, robhoti rakadzidziswa kushandisa kudzidza kwakadzama ringave nekukwanisa kukuru kunzwisisa nekupindura mutauro wevanhu, richivhura mikana mitsva mukudyidzana kwevanhu nemakomputa.
13. Featured Case Studies in Deep Learning
Vanotibvumira kunyatsoongorora kuti nzira iyi yakashandiswa sei munzvimbo dzakasiyana uye inotipa mienzaniso chaiyo yekushanda kwayo. Pazasi, tinopa nyaya nhatu dzezvidzidzo zvinosimbisa kubudirira kwekushandiswa kweKudzidza Kwakadzika muzvikamu zvakasiyana.
1. Kuzivikanwa kwekutaura: Imwe yenzvimbo umo Dzidzo Yakadzama yakave netapuro huru iri mukuzivikanwa kwekutaura. Kuburikidza nekushandiswa kweakadzika neural network, zvave zvichiita kugadzira masisitimu anogona kunzwisisa otomatiki uye kunyora kutaura kwevanhu. Ichi chishandiso chinonyanya kubatsira mumabasa akadai sekushandura otomatiki, vabatsiri vepaindaneti kana kunyorwa kwemagwaro. Zvidzidzo zvenyaya zvinoratidza kuti Kudzidza Kwakadzika kwakavandudza sei kurongeka uye kumhanya kweaya mabasa, zvichipa ruzivo rwakanyanya uye rwakaita kune vashandisi.
2. Kuongororwa kwezvokurapa: Imwe nharaunda umo Kudzidza Kwakadzika kwakaita kufambira mberi kukuru kuri mukuongororwa kwezvokurapa. Ichishandisa yakadzika neural network, mamodheru akagadziridzwa anokwanisa kuongorora otomatiki mifananidzo yekurapa, senge x-rays kana maMRIs, kuona zvirwere kana kusagadzikana. Aya mamodheru anogona kuona mapatani asina kujeka angangoenda asina kucherechedzwa nachiremba wevanhu, zvichitungamira kuwongororwa kwakaringana uye nekuvandudza kushanda kwekurapa. Zvidzidzo zvenyaya zvinoratidza kuti Kudzidza Kwakadzika kwakashandura sei mushonga, kugadzirisa maitiro ekuongorora uye kuvandudza mararamiro evarwere.
3. Kutyaira uchityaira: Kutyaira uchityaira ndechimwe chikamu uko Kudzidza Kwakadzika kwakave nekukanganisa kukuru. Kuburikidza neakadzika neural network, mota dzinozvimiririra dzinogona kuongorora uye kunzwisisa nharaunda mukati nguva chaiyo, kuita sarudzo zvichienderana nekududzirwa kwemifananidzo uye data rekunzwa. Zvidzidzo zvenyaya zvinoratidza kuti tekinoroji iyi yakavandudza sei kuchengetedzeka mumigwagwa, kudzikisa tsaona uye nekugonesa kushandiswa kwesimba. Kudzidza Kwakadzika kwakakosha kuvandudza muchina kudzidza algorithms inobvumira mota dzinozvimiririra kuita sarudzo dzakaringana uye nekukurumidza mumamiriro akaoma emigwagwa.
Izvi zvinoratidza kukanganisa uye kushandiswa kwemaitiro aya munzvimbo dzakasiyana. Kubva pakuzivikanwa kwekutaura kusvika pakuongororwa kwekurapa uye kutyaira uchizvimirira, Kudzidza Kwakadzika kwakaratidza kuve chishandiso chine simba chekugadzirisa matambudziko akaomarara nekuvandudza mashandiro muzvikamu zvakasiyana. Nekuongorora nyaya idzi, tinogona kunzwisisa zviri nani mashandisiro eKudzidza Kwakadzika mumapurojekiti matsva uye mashandisiro azvinogoneka kushandura nzira yatinodyidzana nayo tekinoroji.
14. Mhedziso nefungidziro paKudzidza Kwakadzika
Kudzidza kwakadzama kwakaratidza kuve chishandiso chine simba mumunda wehungwaru hwekugadzira uye kuzivikanwa kwepateni. Muchinyorwa chino, takaongorora pfungwa dzakakosha uye matekiniki anoshandiswa mukudzidza kwakadzama, uye tikasimbisa kukosha kwayo mune dzakasiyana siyana sekugadzirisa mifananidzo, kugadzirwa kwemutauro wechisikigo, uye kutyaira kuzvimiririra.
Imwe yemhedziso huru yatinogona kutora ndeyekuti kudzidza kwakadzama kunoda huwandu hukuru hwe data yekudzidziswa kuti tiwane mhedzisiro chaiyo. Mukuwedzera, ruzivo rwakanaka rwemaitiro uye algorithms anoshandiswa anodiwa, pamwe nekukwanisa kusarudza muenzaniso wakakodzera wedambudziko rimwe nerimwe.
Muchidimbu, kudzidza kwakadzama kunopa nzira inovimbisa yekugadzirisa matambudziko akaomarara. Nekudaro, kuchine matambudziko uye zvisingakwanisi mundima iyi, senge computational mutengo uye dudziro yemhedzisiro. Zvakakosha kuenderera mberi nekutsvaga nekugadzira hunyanzvi hutsva uye maturusi ekukunda matambudziko aya uye kushandisa zvakanyanya kugona kwekudzidza kwakadzama.
Mukupedzisa, kudzidza kwakadzama inzira ine simba mumunda wehungwaru hwekugadzira iyo inotsamira pane yakadzika neural network kutora maficha uye kudzidza maitiro akaomarara kubva kune data otomatiki. Sezvo mashandisirwo ehungwaru hwekugadzira achiramba achikura muzvikamu zvakasiyana, kudzidza kwakadzama kuri kubuda sechishandiso chakakosha chekugadzira ruzivo rwakakura nekunzwisisa.
Nekusimudzira maalgorithms ekudzidza kwakadzama, vaongorori nevarapi vanogona kugadzirisa matambudziko akadai sekuzivikanwa kwekutaura, kuona komputa, kududzira muchina, pakati pezvimwe. Pamusoro pezvo, zvinokutendera kuti uvandudze otomatiki kuita sarudzo kuburikidza nekuzivikanwa chaiko uye kurongedza data.
Nepo kudzidza kwakadzama kuine zvimhingamipinyi zvako, sekuda kwemaseti makuru ekudzidziswa kwedata uye chinodiwa chesimba remakomputa, kugona kwayo kushandura nzvimbo dzakasiyana hazvirambike. Sezvo tekinoroji ichifambira mberi, kudzidza kwakadzama kungangoramba kuchishanduka uye kuwana maapplication matsva munzvimbo dzakaita semushonga, marobhoti, chengetedzo, uye data analytics.
Muchidimbu, kudzidza kwakadzama inzira yekuvandudza inopa tarisiro huru uye zvivimbiso muhungwaru hwekugadzira. Nekugona kwayo kuongorora uye kunzwisisa dhata rakaomarara, inotarisirwa kuve chishandiso chakakosha chekugadzira mhinduro dzepamberi uye nekuvandudza kugona mumaindasitiri akasiyana. Remangwana rekudzidza kwakadzama riri kuvimbisa uye zvazvinoita munharaunda yedu zvichawedzera kukosha.
Ini ndiri Sebastián Vidal, injiniya wekombuta anofarira nezve tekinoroji uye DIY. Uyezve, ndini musiki we tecnobits.com, kwandinogovera zvidzidzo kuti tekinoroji iwanikwe uye inonzwisisika kumunhu wese.