Chii chinonzi Natural Language Processing?

Kugadziridza kwekupedzisira: 21/08/2023

Natural Language Processing (NLP) chirango artificial intelligence iyo inotarisa pakudyidzana pakati pevanhu nemakombiyuta kuburikidza nemutauro wevanhu. Ichishandisa musanganiswa wemitauro, nhamba uye matekiniki ekudzidza muchina, NLP inotarisa pakuongorora, kunzwisisa uye kugadzira mutauro wechisikigo nenzira yega. Muchikamu chino, tichaongorora zvakadzama kuti Natural Language Processing chii, kukosha kwayo uye mashandisiro ayo mundima dzakasiyana.

1. Nhanganyaya kune Natural Language Processing: Tsanangudzo uye zvinangwa

Natural language processing (NLP) inzvimbo yekudzidza inotarisa pakudyidzana pakati pemakomputa nemutauro wevanhu. Chinangwa chayo chikuru ndechekubvumira michina kunzwisisa, kududzira uye kugadzira zvinyorwa uye kutaura nenzira yakafanana nemabatiro anoita munhu. NLP inovhara zvakasiyana-siyana zvekushandisa, kubva pakuzivikanwa kwekutaura kusvika kushanduro yemuchina uye chatbots.

NLP inoshandisa muchina kudzidza uye statistical matekiniki kugadzirisa uye kuongorora huwandu hukuru hwemavara. Izvi zvinosanganisira kushandiswa kwealgorithms uye modhi yemasvomhu inobvumira makomputa kuburitsa ruzivo rwakakodzera, kuona mapatani uye kuita mabasa emitauro senge syntactic uye semantic ongororo. Pamusoro pezvo, NLP inosanganisirawo computational linguistics, iyo ine basa rekugadzira mitemo uye masisitimu ekumiririra nekushandisa mutauro wevanhu.

Iye zvino, NLP inoita basa rakakosha munzvimbo zhinji dzetekinoroji. Semuenzaniso, inoshandiswa mumainjini ekutsvaga kuongorora mibvunzo uye kuratidza mhinduro dzakakodzera, mukati vabatsiri chaiwo saSiri neAlexa kunzwisisa uye kupindura mibvunzo mumutauro wechisikigo, uye mumagariro kuona mafambiro uye maonero evashandisi. NLP zvakare ine maapplication mukuongorora manzwiro, kuburitsa ruzivo, otomatiki pfupiso chizvarwa, uye zvimwe zvakawanda.

2. Zvishandiso zveNatural Language Processing nhasi

Iko kushandiswa kweNatural Language Processing (NLP) nhasi kwakafara uye kunovhara nzvimbo dzakasiyana, kubva kuindasitiri yehunyanzvi kusvika kumushonga, kusanganisira dzidzo nekushambadzira. Imwe yemashandisirwo makuru eNLP kududzira otomatiki, iyo inokutendera kuti ugadzirise uye unzwisise zvinyorwa mumitauro yakasiyana, uchifambisa kutaurirana pakati pevanhu vetsika nemitauro yakasiyana. Pamusoro pezvo, tekinoroji iyi inoshandiswawo muvabatsiri chaiwo, vakaita saSiri kana Alexa, vanokwanisa kududzira uye kupindura mibvunzo mumutauro wechisikigo.

Kumwe kushanda kwakakodzera kweNLP kuburitsa ruzivo, iyo inobvumira kuongorora mavhoriyamu makuru e data rakanyorwa uye kutora ruzivo rwakakosha kubva kwavari. Izvi zvinonyanya kukosha mune zvekurapa, uko zvinyorwa zvekurapa uye zvidzidzo zvesainzi zvinogona kuongororwa kuti zvione mapatani uye kuita ongororo dzakanyanya. Zvakare mumunda wekushambadzira, NLP inoshandiswa kuongorora maonero evatengi pa pasocial network uye sarudza mafambiro uye zvaunofarira.

Chekupedzisira, NLP zvakare ine maapplication mudzidzo. Semuyenzaniso, inoshandiswa kugadzira akangwara tutoring masisitimu ayo anogona kupa munhu mhinduro kuvadzidzi. Aya masisitimu anokwanisa kuongorora zvikanganiso zvemudzidzi uye nekupa tsananguro dzinoenderana nezvinodiwa nemudzidzi wega wega. Pamusoro pezvo, NLP inogona zvakare kushandiswa kuongorora otomatiki uye giredhi zvinyorwa uye mhinduro kuvhurika mibvunzo, kuchengetedza vadzidzisi nguva.

3. Matambudziko makuru muKugadzirisa Mutauro Wechisikigo

Natural Language Processing (NLP) ibazi re njere yekufunga iyo inobata nekudyidzana pakati pemakombiyuta nemutauro wevanhu. Kunyangwe kufambira mberi kwaitwa, NLP ichiri kutarisana nematambudziko akati wandei ayo anodzikamisa mashandisirwo ayo makuru. Pazasi pane matatu ematambudziko makuru mumunda weNLP:

1. Kusajeka kwemutauro wechisikigo

Mutauro wechisikigo haunzwisisike, zvichiita kuti zviome kuti makombiyuta agadzirise. Mazwi nezvirevo zvinogona kuva nezvakawanda zvazvinoreva zvichienderana nemamiriro azvinoshandiswa. Dambudziko iri rinozivikanwa se "disambiguation." Kugadzirisa izvi, hunyanzvi hwakasiyana hwakagadzirwa, sekushandiswa kwenhamba yealgorithms uye modhi yekudzidza muchina inobatsira kuona zvingangoreva zvinoreva izwi kana chirevo mune yakapihwa mamiriro.

2. Kusiyana kwemitauro

Mutauro wechisikigo unosiyana zvakanyanya kubva kumutauri kuenda kumutauri uye kubva mudunhu nedunhu. Kusiyana kwemitauro uku kunoita kuti zviome kugadzira mamodheru nemaalgorithms anoshanda zvinobudirira yemitauro yakasiyana nemitauro. Uyezve, kune mamwe matambudziko ane chekuita nekusiyana kwemazwi uye zvimiro zvegirama zvinoshandiswa mutsika nenharaunda dzakasiyana. Kuti kuderedze zvimhingamipinyi izvi, kutarisisa kwakakura pakuunganidza uye kugadzira data rinomiririra remitauro, pamwe nekuvandudzwa kwemaitiro anochinja uye anochinjika ekugadzirisa, anodiwa.

3. Nzwisisa mashoko akapoteredza

Nzwisisa mamiriro ezvinhu mu iyo inoshandiswa Mutauro wechisikigo unokosha pakugadzirisa kunobudirira. Nekudaro, kubata mamiriro evanhu, kusanganisira manzwiro, vavariro, uye nuances, nemazvo uye nekuvimbika zvinounza dambudziko rakakura. NLP modhi dzinofanirwa kugona kududzira uye kubata izvo chaizvo zvinorehwa kuseri kwemazwi nemitsara, ingave muhurukuro yekutaura, muzvinyorwa zvakanyorwa kana munhau dzakasiyana. Kugadzirisa dambudziko iri, matekiniki epamusoro ekugadzirisa zvinyorwa zvichibva pakunzwisisa semantic uye kuongororwa kwemanzwiro ari kugadzirwa anogonesa kunzwisisa kwakadzama uye kwakaringana kwemamiriro ezvinhu.

Exclusive content - Click Here  Nzira Yokuwana Nayo Munhu

4. Nzira uye algorithms anoshandiswa mu Natural Language Processing

Natural Language Processing (NLP) inoshandisa nzira dzakasiyana uye algorithms kuongorora nekunzwisisa mutauro wevanhu. Idzi nzira dzinobvumira michina kugadzirisa uye kugadzira zvinyorwa nenzira yega. Pazasi pane dzimwe dzeanonyanya kushandiswa nzira uye algorithms muNLP:

1. Tokenization: Inzira yekupatsanura chinyorwa kuita zvidimbu zvidiki zvinonzi tokens. Zviratidzo zvinogona kuva mazwi, mitsara, kana kunyange mavara ega. Iyi nhanho yakakosha kumabasa mazhinji eNLP, sezvo ichipa hwaro hwekuongorora nekunzwisisa zvinyorwa.

2. Grammatical labeling: Inosanganisira kugovera mavara kuchiratidzo chega chega muzvinyorwa zvinoenderana nechikamu chegirama. Izvi zvinokutendera kuti uone kana izwi riri zita, chiito, chirevo, nezvimwe. Grammatical tagging yakakosha kumabasa akadai sekuparura, kuzivikanwa kwesangano, uye disambiguation yelexical.

3. Syntactic analysis: Ine basa rekuongorora maumbirwo egirama emutsara kuti anzwisise masintakisi awo. Shandisa hunyanzvi hwakadai sekuongorora kutsamira kana miti inoumbwa kuona hukama pakati pemazwi nehukuru hwawo. Ongororo yeSyntactic yakakosha pamabasa akadai sekuongorora manzwiro, kushandura nemuchina, uye kugadzira mutauro chaiwo.

5. Zvishandiso uye zviwanikwa zve Natural Language Processing

Muchikamu chino, zvimwe zvezvishandiso zvakakosha uye zviwanikwa zve Natural Language Processing (NLP) zvicharatidzwa. Zvishandiso izvi zvakakosha kuita mabasa akadai sekuongorora manzwiro, kuburitsa ruzivo, kurongedza zvinyorwa uye akawanda mamwe maitiro muchikamu chePLN. Pazasi panotsanangurwa muchidimbu zvimwe zvezvishandiso zvakanyanya uye zvakakurumbira mundima iyi:

  • SpaCy: Iraibhurari yePython NLP inopa seti yezvishandiso zvinoshanda zvekugadzirisa zvinyorwa. SpaCy ine mamodheru akadzidziswa kuita mabasa akadai sechikamu-che-kutaura kunyora, kunzi kuzivikanwa kwesangano, uye izwi rinoreva kusanzwisiswa. Pamusoro pezvo, zvinokutendera kuti udzidzise mamodheru etsika kuti aagadzirise kune chaiwo mabasa.
  • NLTK: The Natural Language Toolkit (NLTK) seti yemaraibhurari uye zvirongwa zvechisikigo kugadzirisa mutauro muPython. Inopa huwandu hwakasiyana hwekuita, kusanganisira maturusi ekuisa chiratidzo, girama tagging, stem extraction, mutsara segmentation, uye izwi chizvarwa chegore.
  • Gensim: Iraibhurari yePython yakagadzirirwa kugadzirisa uye kuongorora zvinyorwa zvisina kurongeka uye kuita chinyorwa chekuenzanisira, kunyora zvinyorwa, uye mabasa ekutsvaga ruzivo. Gensim inyanzvi mukugadzirisa kwakanaka kwemavhoriyamu makuru ezvinyorwa uye inoshandiswa zvakanyanya mumunda weNLP.

6. Natural Language Processing vs. Kuzivikanwa Kwezwi: Kusiyana uye Kufanana

Kugadziriswa kwemutauro wechisikigo (NLP) uye kuzivikanwa kwekutaura inzvimbo mbiri dzine hukama asi dzakasiyana mumunda wehungwaru hwekugadzira. NLP inoreva magadzirirwo nemakomputa uye kunzwisisa mutauro wevanhu, ukuwo kucherechedzwa kwekutaura kunotarisa pakugona kwemichina yekuziva nekushandura kutaura kuita zvinyorwa.

Imwe yemisiyano yakakosha pakati pekugadzirisa mutauro wechisikigo uye kuzivikanwa kwekutaura ndiyo modus operandi. Nepo NLP ichivimba nealgorithms uye matekiniki ekuongorora mamiriro, semantics uye girama yemutauro wevanhu, kucherechedzwa kwekutaura kunotarisa pakuzivikanwa uye kusiyanisa kwemaodhiyo maitiro kuti ashandure kuita zvinyorwa zvakanyorwa. Matanho ese ari maviri anosanganisira kuitiswa kwemamodeli ekudzidza muchina uye masaini ekugadzirisa maitiro, asi nenzira dzakasiyana.

Pasinei nemisiyano iyi, kugadzirwa kwemutauro wechisikigo uye kucherechedzwa kwekutaura kunogoverawo zvakafanana. Iwo ese minda anoshandisa muchina kudzidza algorithms, senge neural network nemitauro modhi, kuvandudza huroyi nekunzwisisa kwedata. Pamusoro pezvo, vese vanobatsirikana kubva kune mavhoriyamu makuru e data rakanyorwa uye vanodzidzisa mamodheru avo vachishandisa nzira dzekudzidza dzakatariswa kana dzisina kutariswa.

7. Natural Language Processing mumunda wehungwaru hwekugadzira

Kugadziriswa kwemutauro wechisikigo (NLP) inzvimbo yehungwaru hwekugadzira inotarisana nekuongorora uye kunzwisisa kwemutauro wevanhu nemakomputa. Kuburikidza nemaalgorithms nemamodheru, chinangwa ndechekuti michina ikwanise kududzira uye kugadzira zvinyorwa nenzira yakafanana neizvo zvingaitwa nemunhu.

Kuita kugadzirwa kwemutauro wechisikigo, kune matanho akasiyana uye maitiro anogona kuteverwa. Kutanga, tokenization yakakosha, iyo inosanganisira kupatsanura zvinyorwa muzvikamu zvidiki, senge mazwi kana mitsara mipfupi. Kucheneswa kwemavara kunobva kwaitwa, uko kunosanganisira kubviswa kwemavara ekunyora, mavara akakosha, uye mazwi asina basa pakuongorora.

Mushure mekuchenesa, kuongororwa kwemanzwiro kunogona kuitwa, iyo inosanganisira kuona kana chinyorwa chine chirevo chakanaka, chisina kunaka kana chisina kurerekera. Ongororo iyi yakavakirwa pakurongwa kwemazwi nemitsara zvichienderana nezvaanoreva mupfungwa. Maitiro ekubvisa ruzivo anogona zvakare kushandiswa, sekuzivikanwa kwesangano, izvo zvinobvumira kuti mazita evanhu, nzvimbo kana makambani azivikanwe muzvinyorwa.

Exclusive content - Click Here  Maitiro ekubatanidza 2 Monitor kune Laptop

8. Impact of Natural Language Processing pane indasitiri

Natural Language Processing (NLP) yakave nemhedzisiro yakakura pamaindasitiri akasiyana. Iyi tekinoroji inobvumira makambani kutora mukana wakazara wesimba remutauro wevanhu kuvandudza zvigadzirwa nemasevhisi avo. Tevere, tichaona kuti PLN iri kushandura sei zvikamu zvakasiyana uye kuti mabhenefiti ayo ndeapi.

Mumunda we service customer, PLN yakashandura nzira iyo makambani anodyidzana nayo Vatengi vako. Nekushandisa advanced NLP algorithms, mabhizinesi anogona kuita otomatiki mabasa senge query classification, ongororo yemanzwiro, uye kugadzira otomatiki mhinduro. Izvi zvinogadzirisa maitiro ebasa revatengi uye zvinovandudza kugutsikana kwevatengi.

Muindasitiri yehutano, NLP yakabatsira mukuvandudza kuongororwa kwechirwere uye kuongororwa. NLP masisitimu anogona kuongorora mavhoriyamu makuru edatha yekurapa uye kubvisa ruzivo rwakakodzera kubatsira vashandi vehutano kuita sarudzo dzekiriniki. Pamusoro pezvo, NLP inobatsira zvakare mukuvandudza hutano hwekushandisa senge chatbots inogona kupa mhinduro ipapo kumibvunzo yakajairika yehutano.

9. Ramangwana reKugadzirisa Mutauro Wechisikigo: Maitiro uye maonero

Mumakore achangopfuura, kugadzirwa kwemutauro wechisikigo (NLP) kwakashanduka zvinokatyamadza uye kwakavhura mikana mitsva munzvimbo dzakasiyana siyana. Zvazvino maitiro uye tarisiro yeramangwana yeNLP inovimbisa ramangwana rinonakidza reichi chirango chinoramba chichikura. Heano mamwe maitiro akakosha ekutarisa.

Machine Kudzidza Technologies: Kushandiswa kwemichina yekudzidza matekiniki akadai sekudzidza kwakadzama uye neural network kuri kushandura ndima yeNLP. Aya matekiniki anobvumira maalgorithms kuti avandudze huchokwadi uye kugona kwavo kunzwisisa uye kugadzira mutauro wechisikigo. Kudzidza kwemichina kwakafambisawo kuvandudzwa kwevabatsiri vechokwadi uye chatbots vanogona kuita mabasa akaomarara emutauro wechisikigo.

Tarisa pakugadzirisa mutauro wemukati: Kugadziriswa kwemutauro wechisikigo ikozvino kwakanangana nekunzwisisa mutauro mumamiriro ayo. Mamiriro emitauro anoenderana nemamiriro ezvinhu, akadai seGPT-3, aratidza kugona kunokatyamadza kuburitsa zvinyorwa zvinoenderana uye zvinoenderana. Iyi nzira yakakosha pakuvandudza kutaurirana pakati pevanhu nemichina, iyo inonyanya kukosha mumashandisirwo akaita seshanduro yemuchina uye kugadzira zvinyorwa.

10. Natural Language Processing uye hukama hwayo ne computational linguistics

Natural Language Processing (NLP) ibasa rekufunda rinotsvaga kudzidzisa makomputa manzwisisiro, kududzira, uye kugadzira mutauro wevanhu. zvakanaka uye nemazvo. Mupfungwa iyi, computational linguistics inotarisa pakugadzirwa kwealgorithms uye maturusi anobvumira kushandiswa kunoshanda kweNLP matekiniki.

Kuti unzwisise hukama pakati peNLP uye computational linguistics, zvakakosha kuratidza kuti computational linguistics inopa hwaro hwetioretical hunodiwa kuvandudza NLP masisitimu uye algorithms. Mamwe ematambudziko anonyanya kugadziriswa mundima iyi anosanganisira kupatsanura, kushandura nemuchina, kuziva kutaura, uye kugadzira zvinyorwa.

Nezve maturusi anoshandiswa muNLP uye computational linguistics, pane akati wandei sarudzo dziripo. Mamwe anonyanya kufarirwa anosanganisira maraibhurari uye masisitimu akadai seNLTK, SpaCy, uye OpenNLP. Zvishandiso izvi zvinobvumira NLP uye computational linguistics nyanzvi kukudziridza maapplication uye mhando dze nzira inoshanda, uchishandisa predefined algorithms kugadzirisa matambudziko akasiyana emutauro wechisikigo.

11. Basa reKugadzira Mutauro Wechisikigo mukududzira muchina

Kugadziriswa kwemutauro wechisikigo (NLP) kunoita basa rakakosha mukuvandudza masisitimu eshanduro yemuchina. Kuburikidza nekuongorora uye kunzwisisa kwemutauro wevanhu, NLP inobvumira michina kuti ishandure otomatiki zvinyorwa kubva kune mumwe mutauro kuenda kune mumwe, ichiwana inowedzera kunyatsojeka uye kwechisikigo mhedzisiro.

Kuti uwane kududzira kwemuchina wemhando yepamusoro, zvinodikanwa kusanganisa maitiro akasiyana-siyana ekugadzirisa mutauro. Imwe yenzira dzinonyanya kushandiswa ishanduro yenhamba, iyo inoshandisa mamodheru kubva pahuwandu hwe data kugadzira shanduro. Imwe nzira ndeyekushandura-based based, apo mitemo yegirama uye yemitauro inoshandiswa kuita shanduro.

Kugadziriswa kwemutauro wechisikigo mukushandura kwemuchina kunosanganisirawo kushandiswa kwezvishandiso uye zviwanikwa. Semuenzaniso, parallel corpora, iyo ine zvinyorwa zvakaenderana mumitauro yakawanda, inogona kushandiswa kudzidzisa nekuvandudza mamodheru eshanduro yemuchina. Pamusoro pezvo, kune maturusi akadai seaya otomatiki, ayo anobvumira mazwi mumitauro yakasiyana kuti aenderane otomatiki kuti afambise kudzidziswa kwemhando dzeshanduro. Zvishandiso izvi uye zviwanikwa zvinobatsira kunatsurudza huchokwadi nekutsetseka kweshanduro dzemuchina.

12. Natural Language Processing yemanzwiro uye maonero ekuongorora

Natural Language Processing (NLP) yekunzwa uye kuongorora maonero inzvimbo inoshandisa muchina kudzidza uye computational linguistics matekiniki ekubvisa ruzivo rwemanzwiro kubva kune makuru mavhoriyamu ezvinyorwa.

Kukwira dambudziko iri, matanho anotevera anogona kuteverwa:

  • Kuunganidzwa kwedata: Danho rekutanga nderekuunganidza seti yedata rakanyorwa rine manzwiro uye pfungwa dzekufarira. Iyi data inogona kuwanikwa kuburikidza nezvinyorwa zvakaita sesocial media, ongororo yepamhepo, kana kuongororwa kwechigadzirwa.
  • Kugadziridzwa kwemavara: Tevere, iyo yakaunganidzwa mameseji data inoda kucheneswa uye kujaira. Izvi zvinosanganisira kubvisa mavara asingadiwe, kushandura mavara kuita mavara madiki, kubvisa mazwi ekumisa, uye kushandisa nzira dzekudzikisa mazwi kuti aderedze mazwi kuti ave manyorerwo awo.
  • Feature Extraction: Kana zvinyorwa zvafanogadziridzwa, maficha akakodzera anofanirwa kutorwa kuti aongororwe manzwiro. Izvi zvinogona kusanganisira kushandisa hunyanzvi hwakadai semabhegi emazwi, n-magiramu, kana mamodheru ekumiririra mazwi akadai seWord2Vec kana GloVe.
Exclusive content - Click Here  Maitiro ekudzoreredza Yakadzimwa Gmail Email

Muchikamu chinotevera, akasiyana emuchina ekudzidza algorithms, senge linear classifiers, masango asina kurongeka, kana neural network, anogona kushandiswa kudzidzisa modhi inogona kunyatsofanotaura manzwiro uye maonero muzvinyorwa zvitsva. Zvakakosha kuongorora kushanda kwemuenzaniso uchishandisa ma metrics akadai sekururama, kukwana uye F1-score. Pamusoro pezvo, kuti uwedzere kunatsiridza huchokwadi hwekuongorora manzwiro, hunyanzvi hwepamberi senge transformer-based mitauro mhando seBERT kana GPT-3 inogona kuongororwa.

13. Ethics uye matambudziko emutemo mu Natural Language Processing

Natural Language Processing (NLP) ibazi rehungwaru hwekugadzira rinotsvaga kudzidzisa michina kunzwisisa nekugadzirisa mutauro wevanhu. Sezvo tekinoroji iyi ichiramba ichifambira mberi uye ichiitwa mune zvakasiyana siyana zvekushandisa, zvakakosha kufunga nezvehutsika uye matambudziko emutemo anomuka mukushandiswa kwayo.

Imwe yematambudziko makuru ehunhu muNLP ndeyekurerekera mune data uye mhando dzemitauro. NLP modhi dzinodzidza kubva kune iripo data, uye kana iyi data iine rusaruro, senge rusaruraganda kana rusaruraganda, mamodheru anoawanawo. Izvi zvinogona kutungamira mukupararira uye kukwidziridzwa kwezvimiro uye rusarura. Izvo zvakakosha kuvandudza uye kushandisa matekiniki kuona uye kuderedza kusarura uku muNLP data uye modhi.

Pamusoro pekusarura, imwe nyaya yakakosha yetsika kuvanzika kwedata uye kuchengetedzeka muNLP. Paunenge uchishandisa huwandu hukuru hwe data rako pachako, senge nhaurirano dzekutaura, maemail kana zvinyorwa zvekurapa, zvakakosha kuve nechokwadi kuti iyi data inoshandiswa zvine musoro uye haina kuburitswa pasina mvumo. Kuita matanho akakodzera ekuchengetedza kuchengetedza kuvanzika kwevanhu uye kutevedzera mitemo yekudzivirira data kwakakosha mukuvandudza uye kutumira masisitimu eNLP.

14. Mhedziso pamusoro peNatural Language Processing uye maitiro ayo munharaunda

Mukupedzisa, Natural Language Processing (NLP) yakaratidzwa kuve ine simba rakakura munharaunda. Sezvo isu tichienda kunguva iri kuwedzera yedhijitari, NLP yave chishandiso chakakosha chekuvandudza kutaurirana pakati pevanhu nemichina.

NLP yakagonesa kuvandudzwa kwezvishandiso uye maturusi anonatsiridza mashandiro uye nemazvo mumabasa akadai sekududzira muchina, kuongorora manzwiro, kuburitsa ruzivo, uye kugadzirwa kwemukati. Zvishandiso izvi zvakashandura mabatiro atinoita tekinoroji, zvichiita kuti zvive nyore kuwana ruzivo, kutaurirana uye kuita sarudzo.

Zvisinei nekufambira mberi kwaitwa, PLN ichiri kuunza matambudziko akati wandei. Mutauro netsika zvinhu zvinopesvedzera huchokwadi uye kushanda kweNLP algorithms. Pamusoro pezvo, pane zvine chekuita nehunhu uye kuvanzika kwakabatana nekushandiswa kweNLP, senge data bias uye kuunganidzwa kweruzivo rwemunhu. Aya matambudziko anofanirwa kugadziriswa kuti ive nechokwadi chekushandisa zvine hunyanzvi uye zvine hutsika kwePLN kuitira kubatsira nharaunda.

Mukupedzisa, kugadzirisa mutauro wechisikigo chirango chinowanikwa pamharadzano yemitauro nesainzi yekombuta, nechinangwa chekugadzira masisitimu anokwanisa kunzwisisa uye kugadzira mutauro wemunhu otomatiki. Kuburikidza nehunyanzvi uye maalgorithms, tinotsvaga kuongorora uye kutora ruzivo runobatsira kubva muzvinyorwa zvakanyorwa kana zvinotaurwa, nokudaro tichibvumira kugadzirwa kwehungwaru mashandisirwo nemasisitimu anofambisa kudyidzana pakati pevanhu nemichina.

Muchinyorwa chino, takaongorora pfungwa dzakakosha dzekugadzirisa mutauro wechisikigo, kubva pamatanho akasiyana ekuongorora mitauro kusvika kune mashandisirwo makuru mundima dzakadai sekushandura nemuchina, kugadzira pfupiso, kuzivikanwa kwekutaura uye mhinduro yemibvunzo yega yega. Pamusoro pazvo, takabata nzira huru dzinoshandiswa, sekuti girama tagging, syntactic analysis, lexical disambiguation uye moenzaniso yemutauro.

Kunyange zvazvo kushandiswa kwemutauro wechisikigo kwakaona kufambira mberi kukuru mumakore achangopfuura, matambudziko uye zvisingakwanisi zvichiripo. Kunzwisisa kwakadzama kwezvinoreva, kugadzirisa kwekusajeka, uye kuchinjika kune mitauro yakasiyana-siyana uye yemamiriro ezvinhu ndezvimwe zvezvinhu izvo vatsvakurudzi vanoramba vachishanda pakuvandudza kushanda kwemaitiro aya.

Muchidimbu, kugadzirwa kwemutauro wechisikigo kunomira senzvimbo inonakidza yekutsvagisa nekusimudzira inovimbisa kushandura nzira yatinotaurirana nemichina. Nekugona kwayo kunzwisisa nekugadzira mutauro wevanhu, inobatsira mukusimudzira kudyidzana pakati pevanhu uye tekinoroji, ichivhura mukana wakasiyana-siyana munzvimbo dzakadai serubatsiro rwechokwadi, kutsvaga ruzivo, kuongorora manzwiro, pakati pezvimwe zvakawanda. Sezvo matekiniki achivandudza uye matambudziko achikurirwa, kugadzirisa mutauro wechisikigo kune chokwadi kuenderera mberi nekuchinja nzira yatinodyidzana nayo nenyika yedhijitari.