IMatrix eThunyelweyo: Inkcazo, iiPropati kunye neMithambo

Uhlaziyo lokugqibela: 30/08/2023

I-matrix eguqulweyo ngumbono osisiseko kwimathematika kunye nethiyori yematrix. Isetyenziswa ngokubanzi kwiindawo ezahlukeneyo ezifana nobunjineli, i-physics kunye ne-computing, ngenxa yobuchule bayo bokwenza lula kunye nokusombulula iingxaki ezinxulumene neenkqubo ze-equations zomgca kunye noguquko lwemigca.

Ngaphambi kokuba uhlolisise kwiipropati kunye nokuzivocavoca okuhambelana ne-matrix eguqulweyo, kubalulekile ukuqonda inkcazo yayo. I-matrix eguqulweyo yenye ifunyenwe ngokutshintshiselana ngemiqolo yeekholamu zematrix enikiweyo. Oko kukuthi, ukuba sine-matrix A yemilinganiselo ye-mxn, emva koko i-matrix eguqulwayo ichazwa njenge-A^T kwaye iya kuba nemilinganiselo nx m.

Enye yezona zinto ziphawuleka kakhulu zematrix eguqulweyo kukuba igcina iimpawu ezithile zematrix yantlandlolo. Ngokomzekelo, ukuba i-matrix A i-symmetric, oko kukuthi, A = A ^ T, ke le symmetry iya kugcinwa kwi-transpose yayo. Ngaphaya koko, ukutshintshwa kwesixa-mali sematriki silingana nesambuku see-transpose zematriki ezixeliweyo.

Ngokumalunga nemithambo yokusombulula, i-matrix eguqulweyo isivumela ukuba senze lula imisebenzi efana nokuphindaphinda kwematrix. Ngokutshintshela i-matrix enye kwaye uyiphindaphinde ngenye, isiphumo esifanayo sifunyanwa njengokuphindaphinda i-matrix yokuqala ngokugqithiswa kwe-matrix yesibini. Le propati ibaluleke kakhulu ekusombululeni iinkqubo ze-equations ze-linear, ukwenza lula inkqubo kunye nokugcina ixesha.

Isishwankathelo, i-matrix eguqulweyo ngumbono obalulekileyo kuhlalutyo lwematrix kwaye ibonelela ngeenzuzo ezininzi ekusombululeni iingxaki zemathematika nezesayensi. Kweli nqaku siza kuphonononga nzulu iipropathi kunye nokuzivocavoca okuhambelana ne-matrix egqithisiweyo, ukuze ukwazi ukusebenzisa esi sixhobo sinamandla. ngempumelelo kwizifundo zakho nakwizicelo ezisebenzayo.

1. Intshayelelo yokuguqula i-matrix

I-matrix eguqulweyo ngumsebenzi oqhelekileyo kwi-algebra yomgca enezicelo ezahlukeneyo kwisayensi nakwitekhnoloji. Yimatrix enesiphumo sokutshintshiselana ngemiqolo yeekholamu zematriki yokuqala. Lo msebenzi uluncedo kakhulu, kuba usivumela ukuba senze lula izibalo kwaye sisombulule iingxaki ezinxulumene neenkqubo zeequation kunye noguquko lwemigca. Kweli candelo, siza kuphonononga ngokweenkcukacha indlela yokufumana i-matrix ye-transpose ye-matrix enikiweyo.

Ukufumana i-matrix eguqulweyo ye-matrix, kufuneka silandele la manyathelo alandelayo:

1. Chonga i-matrix yokuqala, enokumelwa ngendlela yetafile okanye ngendlela yee-equations.
2. Tshintsha imiqolo kunye neentsika zematriki. Oku kuthetha ukuba izinto ebezikho ekuqaleni kwimiqolo ziya kufumaneka kwimiqolo, ngokuphendululekileyo.
3. Rekhoda i-matrix entsha enesiphumo, eya kuba yi-transpose ye-matrix yokuqala.

Kubalulekile ukuqaphela ukuba i-matrix eguqulelweyo ye-matrix yoxande ayitshintshi imilinganiselo yayo, ngelixa i-matrix eguqulwayo ye-matrix yesikwere igcina ukumila okufanayo kodwa izinto zayo zibekwe ngokuphambeneyo. Ngaphaya koko, i-matrix eguqulweyo ye-matrix yantlandlolo yokutshintshwa ilingana ne-matrix yokuqala. Siza kubona ngoku eminye imizekelo oko kuya kubonisa ngcono ezi ngcamango.

Umzekelo 1: Kunikwe i-matrix A = [2 4 1; 3 5 0], masifumane i-matrix yayo ye-transpose A^T. Ngokutshintshisa imigca yeekholomu, sifumana i-matrix transposed A^ T = [2 3; Isine. 4].

Umzekelo 2: Kunikwe i-matrix B = [1 2 3; 4 5 6; 7 8 9], masifumane i-matrix yayo ye-transpose B^T. Ngokutshintshisa imiqolo yeekholomu, sifumana i-matrix transposed B^ T = [1 4 7; 2 5 8; 3 6 9].

Isishwankathelo, i-matrix eguqulweyo sisixhobo esisisiseko kwi-algebra yomgca esivumela ukuba senze lula izibalo kunye nokusombulula iingxaki ezinxulumene neenkqubo ze-equations kunye noguquko lomda. Ukutshintshanisa imiqolo yeekholamu zematrix kusivumela ukuba sifumane i-matrix yayo egqithisiweyo, enokusetyenziswa kwiinkalo ezahlukeneyo ezifana nefiziksi, ubunjineli kunye nekhompyutha.

2. Inkcazo ye-matrix eguqulwayo

I-matrix eguqulweyo yimatrix efunyenwe ngokutshintshisa imiqolo yeekholamu kwimatrix enikiweyo. Lo msebenzi uluncedo kakhulu kwimathematika nakwiprogramu, kuba uvumela ukusebenza nokubala ukuba kuqhutywe ngokufanelekileyo.

Ukufumana i-matrix eguqulweyo, la manyathelo alandelayo kufuneka alandelwe:

- Okokuqala, inani lemiqolo kunye neekholamu ze-matrix yokuqala zichongiwe. Oku kubalulekile ukwazi ukuba imiqolo kunye neekholamu kufuneka zitshintshwe njani kwi-matrix entsha.
Emva koko, i-matrix entsha yenziwa ngenani lemiqolo elingana nenani leekholamu zematrix yantlandlolo, kunye nenani leekholamu ezilingana nenani lemiqolo ye-matrix yokuqala.
- Emva koko, imiqolo itshintshiselwa ngeekholamu. Ukwenza oku, i-elementi kwindawo u-i, j ye-matrix yoqobo iyathathwa kwaye ibekwe kwindawo j, i ye-matrix eguqulweyo.
-Le nkqubo iphinda iphindaphindwe into nganye ye-matrix yokuqala, de kube yonke i-matrix egqithisiweyo igqityiwe.

Kubalulekile ukuba uqaphele ukuba i-matrix eguqulweyo ye-matrix eguqulwayo yimatrix yokuqala. Ukongeza, i-matrix eguqulweyo igcina ezinye iimpawu ze-matrix yoqobo, njengokudibanisa kunye nokuphindaphinda. I-matrix eguqulelweyo iphinda iququzelele ukubalwa kwezinto ezimiselweyo, ii-inverses, kunye neminye imisebenzi ye-matrix. Sisixhobo esisisiseko kwi-algebra yomgca nakwiindawo ezininzi zenzululwazi nobunjineli. [ISIPHELO

3. Ukubalwa kwe-matrix eguqulweyo

Lo ngumsebenzi osisiseko kwialjebra yomgca equka ukutshintshiselana kwemiqolo yeekholamu zematrix enikiweyo. Lo msebenzi uluncedo kakhulu kwiinkalo ezahlukeneyo ezifana nefiziksi, ubunjineli kunye nekhompyuter.

Ukubala i-matrix ye-transpose, la manyathelo alandelayo kufuneka alandelwe:

  • Chonga imatrix yokuqala ofuna ukuyigqithisa.
  • Tshintshiselana kwimiqolo yeekholamu, oko kukuthi, beka izinto ze umqolo wokuqala njengekholamu yokuqala, izinto zomqolo wesibini njengekholamu yesibini, njalo njalo.
  • Isiphumo esifunyenweyo yimatrix efunwayo eguqulweyo.
Umxholo okhethekileyo- Cofa Apha  I-Dynamics kunye neNtshukumo yeeSeli

Kubalulekile ukukhumbula ukuba i-matrix eguqulweyo ye-matrix esele idlulisiwe ilingana ne-matrix yokuqala. Ngaphaya koko, i-matrix eguqulelweyo igcina iipropati ezibalulekileyo, ezifana nesambuku sematriki etshintshiweyo silingana nesixa esitshintshiweyo sematriki yokuqala.

4. Propiedades de la matriz transpuesta

I-matrix eguqulweyo ngumsebenzi osisiseko kwi-algebra yomgca ebandakanya ukutshintshiselana ngemiqolo yeekholamu. Lo msebenzi usetyenziswa kwiinkalo ezahlukeneyo, ezinje ngokusombulula ii-equation ze-linear kunye nokuboniswa kwegrafu yedatha.

Ukufumana i-matrix eguqulweyo ye-matrix enikiweyo, kufuneka silandele la manyathelo:

1. Chonga i-matrix yokuqala, esiza kuyichaza njengo-A.
2. Thatha izakhi ukusuka kuluhlu lokuqala luka-A kwaye uzibeke kumqolo wokuqala we-matrix eguqulweyo, echazwe njenge-A^T.
3. Phinda inyathelo langaphambili kuzo zonke iikholamu zika-A, ubeke izinto ezihambelanayo kwimiqolo efanelekileyo ye-A^T.

Kubalulekile ukuqaphela ukuba i-matrix eguqulweyo ye-matrix eguqulelweyo yi-matrix yokuqala ngokwayo, oko kukuthi (A ^ T) ^ T = A.

I-matrix eguqulelweyo ineempawu ezininzi ezibalulekileyo ezisivumela ukuba senze lula izibalo kwaye sifumane iziphumo ngokulula ngakumbi. Ezinye zezi propati zezi:

– Isixa seematriki ezimbini ezitshintshiweyo zilingana nesixa esitshintshiweyo sematriki yokuqala: (A + B)^T = A^T + B^T.
-Imveliso ye-scalar yenani lokwenyani kunye ne-matrix eguqulweyo ilingana nokuhanjiswa kwemveliso ye-scalar yenombolo ekhankanyiweyo kunye ne-matrix yokuqala: (kA) ^ T = k(A^T).
– I-transpose yophinda-phindo lweematriki ezimbini ilingana nokuphindaphindwa kwee-transposes ngokulandelelana: (AB)^T = B^TA^T.

Ezi zakhiwo zisinika izixhobo zokwenza lula ukusebenza kwe-algebraic ngematriki egqithisiweyo kwaye sifumane iziphumo ngokufanelekileyo. Kubalulekile ukuqwalasela ezi zakhiwo kwaye uzisebenzise ngokuchanekileyo ekuphuhliseni izibalo kunye neengxaki ezinxulumene ne-matrices kunye neenkqubo zokulinganisa umgca.

5. Ipropathi yokutshintshela isixa sematriki

Imisela ukuba ukugqithiswa kwesambuku seematriki ezimbini silingana nesixa seematriki ezixeliweyo. Oku kuthetha ukuba sinokufumana i-transpose yesixa seematriki ngokongeza iimatriki kwaye emva koko sithathe i-transpose yesiphumo.

Ukubonisa le propati, sinokusebenzisa inkcazo ye-transpose ye-matrix: ukutshintshisana kwemiqolo yeekholomu. Masithi sinematriki amabini A kunye no-B. Isimbuku sezi matriki ngu-A + B. Emva koko, sithatha i-transpose yesi sibalo: (A + B)T. Ukufumana i-transpose ka-A + B, sithatha ngokulula ukutshintshwa kwento nganye yesambuku.

Makhe sijonge kumzekelo ukuqonda ngcono le propati. Masithi sinematriki A = [1 2 3] kunye no-B = [4 5 6]. Ukuba songeza ezi matriki, sifumana A + B = [5 7 9]. Ngoku, sithatha ukutshintshwa kwesi sibalo: (A + B)T = [5 7 9]T = [5 7 9]. Sinokubona ukuba isiphumo sokuthatha i-transpose ye-sum ilingana ne-sum of transposes ye-matrices yokuqala.

6. Ipropathi yokutshintshwa kophindaphindo lwematriki

Isixhobo esiphambili kwialjebra yomgca. Le propati ithi i-transpose yemveliso yeematriki ezimbini ilingana nemveliso yee-transposes zematriki nganye kodwa ngokulandelelana. Oko kukuthi, ukuba u-A kunye no-B ziimatriki, ke i-transpose yemveliso engu-AB ilingana ne-transpose ka-B ephindaphindwe ngokugqithiswa kuka-A.

Ukungqina le propati, makhe siqwalasele iimatriki ezimbini A no-B. Okokuqala, siphindaphinda imatriki A kunye no-B kwaye sifumane imatriki engu-AB. Okulandelayo, sibala i-transpose ye-matrix AB, echazwe njenge (AB)^T. Okulandelayo, sibala i-transpose ka-A kunye no-B, ochazwe njengo-A^T kunye no-B^T ngokulandelelanayo. Okokugqibela, siphinda-phinda B^T ngo A^T kwaye khangela ukuba isiphumo siyalingana no (AB)^T. Ukuba zombini iimveliso ziyalingana, ngoko ke ipropati ibambe.

Nanku umzekelo obonisa i. Masithi sinematriki A = [[1, 2, 3], [4, 5, 6]] kunye ne-B = [[7, 8], [9, 10], [11, 12]]. Okokuqala siphinda-phinda imatriki A kunye no-B kwaye sifumane imatriki AB. Emva koko sibala i-transpose ye-AB kwaye sifumane i-matrix (AB) ^ T. Okulandelayo, sibala i-transpose ye-A kunye no-B, kule meko i-A^T = [[1, 4], [2, 5], [3, 6]] kunye ne-B^T = [[7, 9, 11], [8, 10, 12]]. Okokugqibela, siphindaphinda i-B^T ngo-A^T kwaye sifumane i-matrix B^T * A^T. Ukuba ipropati ibambe, isiphumo se-B^T * A^T kufuneka silingane (AB)^T.

7. Ipropathi ye-transpose yemveliso yamachaphaza e-matrix

Le yingcinga esisiseko kwicandelo lemathematika kunye ne-algebra yomgca. Le propati ithi i-transpose yemveliso yamachaphaza yeematriki ezimbini ilingana nemveliso yamachaphaza yee-transposes zematriki ezixeliweyo. Inkqubo ichazwe ngezantsi Inyathelo nenyathelo ukulungisa le ngxaki:

1. Okokuqala, kubalulekile ukukhumbula ukuba i-transpose ye-matrix ifunyenwe ngokutshintshisa imiqolo yeekholomu. Ngoko ke, ukuba sinematriki ezimbini A kunye no-B, ii-transposes zezi matriki zichazwa njengo-A^T no-B^T, ngokulandelelanayo.

2. Imveliso yamachaphaza phakathi kweematriki ezimbini ichazwa njengexabiso leemveliso zezinto ezihambelanayo zeematriki. Oko kukuthi, ukuba sinematriki ezimbini A kunye no-B zemilinganiselo (mxn), imveliso yamachaphaza ibalwa ngokuphindaphinda izakhi zendawo enye kunye nokuzongeza.

Umxholo okhethekileyo- Cofa Apha  Isicelo sokupela iSelfowuni kwi-TV.

3. Ukungqina i-, kufuneka kuboniswe ukuba (AB)^T = B^TA^T. Ukuphuhlisa amacala omabini Ukususela kwi-equation, sinokubona ukuba izinto ze-matrix ezibangelwayo kwiimeko zombini zilingana, eziqinisekisa ipropati.

Isishwankathelo, ithi i-transpose yemveliso ye-scalar yeematriki ezimbini ilingana nemveliso ye-scalar ye-transposes yeematriki ezixeliweyo. Le ngcamango isivumela ukuba senze lula kwaye sibonise imisebenzi yezibalo eyahluka-hlukeneyo kummandla we-algebra yomgca. Ukukhumbula iinkcazo kunye nokulandela inkqubo yesinyathelo ngesinyathelo ngundoqo ekuqondeni nasekusebenziseni le propati ye ngempumelelo.

8. Imizekelo yeematriki ezitshintshiweyo

Ukuqonda ngcono ingqikelelo yeematriki eziguqulwayo, kuluncedo ukuphonononga eminye imizekelo. Okulandelayo, imizekelo emithathu iya kuboniswa ebonisa indlela uguqulo lwematrix olwenziwa ngayo.

Umzekelo 1: Makhe siqwalasele imatrix A yobukhulu 3×3:
«`
A = [[1, 2, 3],
[4, 5, 6],
[7, 8, 9]]
«`
Ukufumana i-matrix eguqulweyo ye-A, sitshintsha nje imiqolo yeekholamu. Ke ngoko, i-matrix eguqulweyo ka-A, echazwa njengo-A^T, iya kuba:
«`
A^T = [[1, 4, 7],
[2, 5, 8],
[3, 6, 9]]
«`

Umzekelo 2: Ukuba sine-matrix B yobukhulu 2×4:
«`
B = [[1, 2, 3, 4],
[5, 6, 7, 8]]
«`
I-matrix eguqulweyo ye-B, B ^ T, ifunyenwe ngokutshintshisa imiqolo yeekholomu. Ke ngoko, i-matrix eguqulweyo ka-B iya kuba:
«`
B^T = [[1, 5],
[2, 6],
[3, 7],
[4, 8]]
«`

Umzekelo 3: Ngoku cinga ukuba sine-matrix C yobungakanani be-4 × 2:
«`
C = [[1, 2],
[3, 4],
[5, 6],
[7, 8]]
«`
I-matrix eguqulweyo ye-C, C ^ T, ifunyenwe ngokutshintshisa imiqolo yeekholomu. Ke ngoko, i-matrix eguqulweyo ye-C iya kuba:
«`
C^T = [[1, 3, 5, 7],
[2, 4, 6, 8]]
«`

Ngaloo ndlela iimatriki ezigqithisiweyo zingabalwa ngobukhulu obuhlukeneyo kunye neziqulatho. Ukutshintshwa kwe-matrix ngumsebenzi osisiseko kwimathematika kwaye isetyenziswa kwizicelo ezahlukeneyo, ezinje ngokusombulula ii-equations kunye nokukhohlisa idatha kuhlalutyo lwamanani.

9. Ukwenziwa njani imisebenzi ngeematriki ezigqithisiweyo

Xa usebenza ngeematriki ezigqithisiweyo, kubalulekile ukuqonda indlela yokwenza imisebenzi esisiseko ukukhohlisa kunye nokusombulula iingxaki ezinxulumene nazo. Apha ngezantsi, inkqubo yenyathelo nenyathelo lokuqhuba le misebenzi iya kuboniswa:

1. Ukufumana imatrix egqithisiweyo: Ukufumana i-matrix eguqulweyo ye-matrix enikiweyo, imiqolo kufuneka itshintshwe kunye neentsika. Oku kuphunyezwa ngokubeka izinto zomqolo kwindawo ehambelana neekholomu kunye nokunye. Le nkqubo inokwenziwa ngesandla okanye ngokusebenzisa izixhobo ezikhethekileyo okanye isoftware.

2. Isimbuku seematriki ezigqithisiweyo: Ukongezwa kweematriki ezimbini eziguqulweyo kwenziwa ngokudibanisa izinto ezihambelanayo kwindawo efanayo yazo zombini iimatriki. Kubalulekile ukuqinisekisa ukuba iimatriki zinomlinganiselo ofanayo, oko kukuthi, zinenani elifanayo lemiqolo kunye neekholomu.

3. Uphindaphindo lwematriki oluguqulelweyo: Ukuphindaphindwa kweematriki ezimbini ezitshintshiweyo zenziwa ngokuphindaphinda into nganye ye-matrix eguqulelweyo ye-matrix yokuqala ngento ehambelanayo ye-matrix yesibini eguqulwayo. Isiphumo luluhlu olutsha olunokuba nemilinganiselo eyahlukileyo kuneyokuqala.

10. Ukuzivocavoca ukuziqhelanisa ne-matrix eguqulweyo

I-matrix eguqulweyo yimatrix efunyenwe ngokutshintshisa imiqolo kunye neekholamu zematrix enikiweyo. Lo msebenzi uluncedo ngakumbi kumgca wealjebra kwaye unokufakwa kwiimatriki zayo nayiphi na isayizi. Apha ngezantsi kukho uthotho lweendlela zokuzilolonga eziya kukunceda uziqhelanise ne-matrix eguqulelweyo kwaye udibanise ulwazi lwakho kwesi sihloko.

1. Umsetyenzana wokubala we-matrix oguqulelweyo: Unikwe imatriksi A, bala imatrix eguqulelweyo AT. Khumbula ukuba ukufumana i-matrix eguqulweyo, kufuneka utshintshe imiqolo yeekholamu zika-A. Sebenzisa ifomula A.ij = Aji ukubala iziqalelo zematrix egqithisiweyo.

2. Umsebenzi wokuqinisekisa ipropathi ye-matrix eguqulelweyo: Qinisekisa ukuba imatrix eguqulelweyo ye-matrix eguqulweyo ka-A ilingana ne-matrix yokuqala. Ukwenza oku, qala ubale i-matrix ye-transpose ka-A kwaye emva koko i-matrix ye-transpose ye-matrix ye-transpose ka-A. Jonga ukuba zombini iimatriki ziyalingana usebenzisa ipropati yokulingana yematrix.

11. Izisombululo kwimithambo ye-matrix egqithisiweyo

Kweli candelo, siza kuphonononga izisombululo zokuzivocavoca ezinxulumene ne-matrix egqithisiweyo. Ngaphambi kokungena kwi-exercises, kubalulekile ukuqonda ukuba yintoni i-matrix eguqulwayo. I-matrix eguqulweyo yenye apho imiqolo itshintshiselwana ngeekholamu, oko kukuthi, izinto zomqolo ndibe zizinto zekholamu i.

Ukusombulula imithambo enxulumene ne-matrix egqithisiweyo, landela la manyathelo:

1. Chonga imatrix enikiweyo: Qinisekisa ukuba ucacile malunga nokuba yeyiphi imatrix osebenza nayo. Le matrix inokuba yiseti yamanani okanye iinguqu.

2. Fumana i-matrix eguqulweyo: Ukufumana i-matrix eguqulweyo, kufuneka utshintshe imiqolo kwiikholamu. Ungakwenza oku ngokubhala izinto zomqolo wokuqala we-matrix yokuqala njengekholamu yokuqala ye-matrix eguqulweyo, izinto zomqolo wesibini njengekholamu yesibini, njalo njalo.

3. Jonga isisombululo: Wakuba ufumene imatrix eguqulweyo, khangela impendulo yakho ngokuqinisekisa ukuba iielementi zitshintshwe ngokuchanekileyo. Unokwenza oku ngokuthelekisa i-matrix eguqulweyo efunyenweyo kunye nenkcazo ye-matrix egqithisiweyo.

Umxholo okhethekileyo- Cofa Apha  IGraffiti yeSelfowuni yangasemva

Khumbula ukuziqhelanisa nemizekelo eyongezelelweyo ukuze uqhelane nenkqubo yokufumana i-transpose matrix. Ungalibazisi ukusebenzisa izixhobo ezifana nezixhobo zokubala zematriki ukujonga iimpendulo zakho kunye nokuphucula izakhono zakho ekusombululeni le mithambo!

12. Ukusetyenziswa kwe-matrix eguqulweyo kwiinkqubo zokusombulula ii-equations zomgca

I-matrix eguqulweyo sisixhobo esinamandla sokusombulula ii-equations zomgca ngokufanelekileyo. Kweli candelo, siza kuphonononga usetyenziso olusebenzayo lwe-matrix ye-transpose kunye nendlela enokuququzelela ngayo isisombululo sezi nkqubo.

Esinye sezona zicelo zixhaphakileyo ze-transpose matrix ekusombululeni iinkqubo zee-equations zomgca kukufumana isisombululo usebenzisa indlela ye-Gauss-Jordan yokuphelisa. Le ndlela iquka ukuguqula i-coefficient matrix yenkqubo ibe yifom ye-stepwise, enkosi kwimisebenzi yokuqala ngemigca. Nje ukuba i-matrix ikwifom ye-echelon, sinokusebenzisa i-matrix eguqulweyo ukufumana isisombululo senkqubo.

Ukusebenzisa i-transpose matrix kwindlela yokuphelisa i-Gauss-Jordan, silandela la manyathelo:

  • Senza i-matrix eyandisiweyo yenkqubo, equkethe i-coefficient matrix kunye nekholomu yamagama azimeleyo.
  • Sisebenzisa imisebenzi yomqolo osisiseko ukuguqula i-matrix eyandisiweyo ibe yi-echelon matrix encitshisiweyo.
  • Sibala i-matrix eguqulweyo ye-matrix encitshisiweyo ye-echelon.
  • Sisebenzisa i-matrix egqithisiweyo ukumisela isisombululo kwinkqubo yokulinganisa.

I-matrix eguqulwayo yenza lula inkqubo yokufumana isisombululo senkqubo, ekubeni ivumela ukuba sisebenze kunye ne-matrix encitshisiweyo endaweni ye-matrix yokuqala. Oku konga ixesha kunye nomzamo, ngakumbi kwiinkqubo ezinkulu, ezinzima ngakumbi.

13. Ukusetyenziswa kwe-matrix eguqulweyo ekubaleni izikhombisi

Xa uxazulula izikhombisi ze-matrix, kunokwenzeka ukwenza lula ukubala ngokusebenzisa i-matrix eguqulweyo. Imatrix eguqulweyo ifumaneka ngokutshintshiselana ngemiqolo yeekholamu zematrix enikiweyo. Kule meko, sinokusebenzisa i-matrix ye-transpose ukubala izichasi zeematriki zesikwere.

Inkqubo yokusebenzisa i-matrix eguqulweyo ekubaleni izikhombisi ihamba ngolu hlobo lulandelayo:

  • Fumana imatrix yoqobo ofuna ukubala kuyo isilawuli.
  • Bala i-matrix eguqulweyo ngokutshintshisa imiqolo yeekholamu.
  • Sebenzisa indlela yokubala ekhethiweyo emiselayo (umzekelo, indlela yecofactor okanye indlela ye-Gauss-Jordan yokususa) kwi-transpose matrix.
  • Thatha isiphumo esifunyenweyo njengesigqibo se-matrix yokuqala.

Unokwenza lula inkqubo, ngakumbi xa ejongene nokufa okukhulu. Obu buchule bunokuba luncedo kwizicelo ezahlukeneyo zemathematika nezenzululwazi, ezinje ngokusombulula iisistim zolandelelwano lweeequation okanye iindawo zokubala kunye nemiqulu yejometri. Zama ukusebenzisa i-matrix eguqulelweyo kwixesha elizayo xa ufuna ukubala isilawuli kwaye ufumanise ukuba sisebenza kangakanani na!

14. Isiphelo kunye nesishwankathelo se-matrix egqithisiweyo kunye neempawu zayo

Ukuqukumbela, i-matrix eguqulweyo ngumsebenzi osisiseko kwi-algebra ehambelanayo esivumela ukuba sitshintshe imigca yeekholamu. Lo msebenzi uneempawu ezininzi ezibalulekileyo eziluncedo kwiinkalo ezahlukeneyo zemathematika kunye nesayensi yekhompyuter. Okulandelayo, siya kushwankathela ezona mpawu zifanelekileyo zematrix egqithisiweyo:

  • Ukutshintshwa kwe-matrix A ilingana ne-matrix yokuqala: (A^T)^T = A.
  • I-transpose yesixa seematriki ezimbini ilingana nesixa se-transposes zezo matriki: (A + B)^T = A^T + B^T.
  • I-transpose yemveliso ye-matrix kunye ne-scalar ilingana nemveliso ye-scalar kunye ne-transpose ye-matrix: (kA)^T = k(A^T).
  • Ukutshintshwa kwemveliso yeematriki ezimbini zilingana nemveliso yokutshintshwa kwezo matriki, kodwa ngokulandelelana: (AB)^T = B^T A^T.

Ezi mpawu zibalulekile ekulawulweni kweematriki eziguqulwayo kunye nokwenza lula iintetho zemathematika. I-matrix eguqulelweyo isetyenziswa kwizicelo ezininzi ezisebenzayo, ezinje ngokusombulula iinkqubo zee-equation zomgca, iimatrices ezidityanisiweyo, kunye nokuhlalutya izakhiwo zemigca. Ukuqonda kunye nobuchule bayo bubalulekile kufundo lwealjebra yomgca.

Isishwankathelo, i-matrix eguqulweyo sisixhobo esinamandla kwi-algebra ehambelanayo esivumela ukuba sitshintshe imigca yeekholamu. Iimpawu zayo zisivumela ukuba senze lula kwaye sisebenzisane nenkcazo yemathematika ngokufanelekileyo. Kubalulekile ukukhumbula iimpawu eziphambili njengoko zisetyenziswa kwiimeko ezininzi kunye nezicelo. Qhubeka uziqhelanisa kwaye uphonononge imizekelo eyahlukeneyo ukuze uphucule ukuqonda kwakho kunye nezakhono ngematriki egqithisiweyo.

Isishwankathelo, i-matrix egqithisiweyo sisixhobo esinamandla kwibala lemathematika kunye nokusombulula iingxaki ezinxulumene neenkqubo ze-equations zomgca. Ngokutshintsha nje imiqolo kwiikholomu, sinokufumana i-matrix eguqulwayo esinika ulwazi oluxabisekileyo malunga neempawu kunye neempawu zenkqubo enikeziweyo.

Siphonononge inkcazo kunye neempawu ezisisiseko zematrix egqithisiweyo, kwaye sihlalutye ezinye iindlela zokuzilolonga eziye zasivumela ukuba siqonde ngcono ukuba luncedo kwayo kunye nokusetyenziswa kwayo. emhlabeni yokwenyani.

Kubalulekile ukugxininisa ukuba i-matrix eguqulelweyo sisixhobo esiphambili kwiinkalo ezahlukeneyo, ezifana nobunjineli, uqoqosho, i-physics kunye nesayensi yekhompyutha, phakathi kwabanye. Ukuqonda kunye nobuchule bayo bubalulekile kwabo banqwenela ukungena nzulu kula macandelo kwaye basebenzise imathematika njengesixhobo esinamandla sokusombulula iingxaki kunye nokwenza izigqibo ezinolwazi.

Ukuqukumbela, i-matrix egqithisiweyo sisixhobo semathematika esixabisekileyo nesisebenzayo, esivumela ukuba sisebenzise kwaye hlalutya idatha ngempumelelo. Ukuqonda kwayo okufanelekileyo kuya kusivumela ukuba sisombulule iingxaki ngokufanelekileyo kwaye siphuhlise izisombululo ezintsha kwiinkalo ezahlukeneyo.