Ziziphi iiNethiwekhi zeNeural ezenziweyo?

Uhlaziyo lokugqibela: 23/07/2023

Ziziphi iiNethiwekhi zeNeural ezenziweyo?

I-Artificial Neural Networks (ANN) ziimodeli ezibaliweyo eziphefumlelwe kukusebenza kwengqondo yomntu. Ezi nkqubo zokucwangcisa ulwazi, ngokusekelwe kwii-algorithms kunye nobuchule bemathematika, ibe yenye yezona zixhobo ezinamandla kwintsimi. kukubhadla okungeyonyani. Ukukwazi kwayo ukufunda nokuziqhelanisa nemizekelo enikiweyo kukhokelele kwinkqubela phambili ebalulekileyo kwimimandla efana nokuqatshelwa kwepateni, ukuhlelwa kwedatha, ukuqikelela iziphumo, kunye nokwenza izigqibo.

Ngokungafaniyo ne-algorithms yesiko, ii-ANN azilandeli ulandelelwano oluqiqiweyo oluchazwe kwangaphambili, kodwa endaweni yoko zisebenza ngesakhiwo esihambelanayo kunye nosasazo, ukudibanisa iindawo ezininzi ezidityanisiweyo ezibizwa ngokuba "yi-neurons yokwenziwa." Nganye yale neurons iyakwazi ukucubungula ulwazi olufumanayo, ukwenza izibalo kunye nokudlulisela iziphumo kwezinye ii-neurons ezikufutshane, ukuvumela intsebenziswano enkulu kunye nokusebenza ngaxeshanye kuyo yonke inkqubo.

Ii-ANN zenziwe ngamaleko ahlukeneyo, ngalinye lineseti ethile ye-neurons. Umaleko wokuqala, owaziwa ngokuba ngumaleko wegalelo, ufumana kwaye usetyenzwe idatha yegalelo lokuqala. Ngokusebenzisa uxhulumaniso lwe-synaptic, ulwazi lugeleza kwiileyile ezifihliweyo, apho ukucubungula kunye nokukhutshwa kwezinto ezibalulekileyo kwenzeka. Ekugqibeleni, umaleko wemveliso ubonisa iziphumo ezifunyenwe yinkqubo.

Ukusebenza kwee-ANN kusekelwe kwisabelo sobunzima kuqhagamshelo phakathi kwee-neurons, ezimisela ukubaluleka konxibelelwano ngalunye. Ezi zisindo zihlengahlengiswa ngokuphindaphindiweyo ngexesha lenkqubo yoqeqesho lwenkqubo, kusetyenziswa i-algorithms yokufunda. Ngale ndlela, i-ANN ifunda ukwandisa ukusebenza kwayo kwaye ivelise iimpendulo ezichanekileyo njengoko ibonakaliswe kwimizekelo emininzi kunye neenkcukacha.

Ngaphandle kokuntsonkotha kwazo, ii-ANN zisetyenziswa ngakumbi kwaye zifundwa kwiindawo ezahlukeneyo ezinje ngamayeza, iirobhothi, umbono wekhompyuter, ukusetyenzwa kolwimi lwendalo kunye neshishini lezothutho, phakathi kwabanye. Ukukwazi kwayo ukusetyenzwa kweedatha ezininzi kunye nokufumana iipateni ezifihliweyo kuguqule izifundo ezininzi kwaye kwaqhubela phambili iteknoloji entsha.

Isishwankathelo, i-Artificial Neural Networks imele indlela ekhangayo ingqiqo, evumela oomatshini ukuba bafunde ngendlela efanayo nendlela abantu abafunda ngayo. Ulwakhiwo lwabo oluhambelanayo, oluguquguqukayo olusekwe kuqhagamshelo olunobunzima bubenza babe sisixhobo esibalulekileyo sokusombulula iingxaki ezintsonkothileyo kunye nokuphucula ukusebenza kwezicelo ezininzi zetekhnoloji.

1. Intshayelelo kwiiNethiwekhi zeNeural Artificial

I-Artificial Neural Networks yimodeli yokudibanisa ephefumlelwe yingqondo yomntu, eyilelwe ukulinganisa inkqubo yokufunda ye-neurons. Olu nxibelelwano lusetyenziswa kwiindawo ezahlukeneyo ezifana nokuqatshelwa kwepateni, ukubikezelwa kwedatha, ukulungiswa kwemifanekiso kunye nokulawulwa kwenkqubo. Ziluncedo ngakumbi kwiingxaki ezinzima ezifuna ukusetyenzwa okufanayo kunye nokulungelelanisa.

Ukusebenza kwe-Artificial Neural Networks kusekwe kuqhagamshelo lweenodi ezibizwa ngokuba zii-neurons ezenziweyo okanye iiyunithi zokusetyenzwa. Ezi yunithi zibekwe ngokwamaqela kwaye nganye kuzo yenza imisebenzi yezibalo isebenzisa ulwazi olufunyenwe kwiiyunithi zangaphambili. Uqhagamshelwano ngalunye phakathi kweeyunithi lunobunzima obunxulumeneyo obumisela ukubaluleka kolu qhagamshelwano kwinkqubo yokufunda.

Kukho iintlobo ezahlukeneyo zeeNethiwekhi zeNeural Ezenziwayo, ezinje ngothungelwano lwe-feedforward, uthungelwano oluqhubekayo kunye nothungelwano lwe-convolution. Uhlobo ngalunye luneempawu ezithile ezibenza bafanelekele imisebenzi eyahlukeneyo. Ukongeza, kukho ii-algorithms zokufunda ezivumela ezi nethiwekhi ukuba ziqeqeshelwe ukuqaphela ipateni okanye ukusonjululwa kweengxaki ezithile.

Isishwankathelo, i-Artificial Neural Networks sisixhobo esinamandla sokusombulula iingxaki ezinzima ezifuna ukusetyenzwa ngokuhambelanayo kunye nokukwazi ukuziqhelanisa. Ukusebenza kwayo kusekelwe ekudibaneni kwee-neurons ezenziweyo kunye nokunikezelwa kobunzima kolu nxibelelwano, oluvumela ukufunda ipateni. Ngoko ke, ukusetyenziswa kwayo kubanzi kwaye kuluhlu ukusuka ekuqapheliseni ipateni ukuya kumfanekiso womfanekiso.

2. Imbali emfutshane ye-Artificial Neural Networks

I-Artificial Neural Networks (ANN) yimodeli yezibalo kunye nokubala ephefumlelwe yinkqubo ye-nervous ephakathi yezinto eziphilayo, eyenziwe ngee-neurons ezidibeneyo. Umbono wokusebenzisa uthungelwano lwe-neural eyenziweyo lwavela ngeminyaka yoo-1940, kodwa akuzange kube ngowe-1980 apho baqala khona ukuphuhliswa ngokunzulu ngakumbi.

Eyona njongo iphambili yothungelwano lwe-neural eyenziweyo kukuxelisa ukusebenza kwengqondo yomntu ukusombulula iingxaki ezinzima. ngokufanelekileyo. Olu nxibelelwano lwenziwe ngezaleko ze-neuron ezidityanisiweyo, apho i-neuron nganye ifumana amagalelo, yenza imisebenzi kunye naloo magalelo kwaye ivelise imveliso esebenza njengegalelo kwii-neurons ezilandelayo.

Ukufezekisa oku, iinethiwekhi ze-neural zokwenziwa zisebenzisa i-algorithms yokufunda ngomatshini ehlengahlengisa ubunzima bonxibelelwano phakathi kwe-neurons ngexesha lesigaba soqeqesho, ukuze inethiwekhi ifunde ukwenza imisebenzi efunwayo. Eminye imizekelo Ukusetyenziswa kothungelwano lwe-neural eyenziweyo lubandakanya ukuqondwa kwentetho, ukufumanisa ubuqhophololo, ukuxilongwa kwezonyango kunye nokuqikelela imozulu.

Isishwankathelo, uthungelwano lwe-neural eyenziweyo luyimodeli yokudibanisa ephefumlelwe yingqondo yomntu evumela ukusombulula iingxaki ezintsonkothileyo ngokusetyenziswa komatshini wokufunda i-algorithms. Olu nxibelelwano lwenziwe ngamaleko ee-neurons ezidibeneyo, ezihlengahlengisa ubunzima bazo ngexesha lesigaba soqeqesho ukuze zifunde ukwenza imisebenzi ethile. Usetyenziso lwayo lugubungela iinkalo ezahlukeneyo, ukusuka ekuqapheliseni ilizwi ukuya kuqikelelo lwemozulu. Uthungelwano lwe-neural yokwenziwa sisixhobo esinamandla sokuhlalutya idatha kunye nokusetyenzwa!

3. Ubume kunye nokusebenza kweeNethiwekhi zeNeural Artificial

I-Artificial Neural Networks (ANNs) ziimodeli ezibaliweyo ezisekelwe kulwakhiwo kunye nokusebenza kwenkqubo yemithambo-luvo yomntu ukusombulula iingxaki ezinzima. indlela esebenzayo. Olu nxibelelwano lwenziwe ziiyunithi zokusetyenzwa ezibizwa ngokuba zii-neurons zokwenziwa kwaye zilungelelaniswe ngokwemaleko adityanisiweyo avumela ukuhamba kolwazi.

Ulwakhiwo olusisiseko lwe-ANN luqulunqwe ngumaleko wegalelo, umaleko omnye okanye ngaphezulu ofihliweyo, kunye nemveliso yemveliso. I-neuron nganye ekumaleko omnye iqhagamshela kwiiseli zemithambo-luvo kuluhlu olulandelayo ngoqhagamshelwano olunobunzima. Ukusebenza kwe-ANN kusekelwe ekuqhutyweni kweempawu zegalelo ngokusebenzisa ezi zidibaniso ezinobunzima kunye nokusetyenziswa komsebenzi wokuvula ukumisela imveliso ye-neuron nganye.

Ukuqonda ngcono ukuba zisebenza njani ii-ANN, kubalulekile ukwazi iindidi ezahlukeneyo zothungelwano olukhoyo, olufana nothungelwano lwe-feedforward kunye nothungelwano oluqhubekayo. Ngaphezulu, kubalulekile ukuqonda ii-algorithms zokufunda ezisetyenziswa kwii-ANN, ezinjengokufunda okubekwe esweni nokufunda okungajongwanga. Ezi algorithms zivumela ubunzima boqhagamshelwano phakathi kwe-neurons ukuba luhlengahlengiswe ukuze i-ANN ikwazi ukufunda kunye nokudibanisa ngokubanzi kwidatha yoqeqesho.

4. Iintlobo zeeNethiwekhi ze-Neural Artificial ezisetyenziswa namhlanje

Okwangoku, kukho iindidi ezininzi zothungelwano lwe-neural eyenziweyo olusetyenziswa kwinkalo yobukrelekrele bokwenziwa kunye nokufunda koomatshini. Ezi intanethi ziyakwazi ukulinganisa ukusebenza kwee-neurons kwingqondo yomntu, ukuvumela ukuqhutyelwa kolwazi olunzima kunye nokwenza izigqibo ezisekelwe kwiipatheni kunye neenkcukacha.

Umxholo okhethekileyo- Cofa Apha  IKhalenda kaGoogle: Isebenza njani

Olunye lwezona ntlobo zixhaphakileyo zothungelwano lwe-neural eyenziweyo yinethiwekhi ye-neural eya phambili, ekwabizwa ngokuba yi-forward neural network. Lo msebenzi wothungelwano uqulathe umaleko wegalelo, umaleko omnye okanye ngaphezulu ofihliweyo, kunye nomaleko wemveliso. Ulwazi luhamba kwicala elinye, ukusuka kuluhlu lwegalelo ukuya kuluhlu lwemveliso, ngaphandle kwengxelo. Iluncedo ngakumbi kuhlelo kunye nokuqatshelwa kwepateni.

Olunye uhlobo olusetyenziswa ngokubanzi lwenethiwekhi ye-neural yi-recurrent neural network (RNN). Ngokungafaniyo nothungelwano lwe-feed-forward, ii-RNNs zinonxibelelwano lwe-feed-forward oluvumela ulwazi ukuba luqwalaselwe kwiilophu. Oku kubenza bafaneleke ngokukodwa kwimisebenzi ebandakanya ulandelelwano, njengokusetyenzwa kwetekisi kunye nohlalutyo lwamaxesha. Ngaphaya koko, ii-RNNs ziyakwazi ukufunda ukuxhomekeka kwexesha elide, okuzenza zisebenze ngakumbi kwiingxaki zexeshana.

5. Ukufunda i-algorithms kwi-Artificial Neural Networks

Kwi-Artificial Neural Networks, ii-algorithms zokufunda zidlala indima ebalulekileyo ekuqeqesheni nasekulungiseni kakuhle ukusebenza kwenethiwekhi. Ezi algorithms zivumela inethiwekhi ye-neural ukuba ifunde kwidatha yegalelo kwaye yenze uqikelelo okanye ulwahlulo olusekwe kulwazi olufundiweyo. Apha ngezantsi kukho iindlela ezintathu zokufunda ezisetyenziswa ngokubanzi kuthungelwano lwe-neural eyenziweyo.

1. I-Algorithm yokusasazwa ngasemva: Le algorithm iqhele ukusetyenziswa kwiinethwekhi ze-neural ezininzi. Iqukethe inkqubo ephindaphindayo apho umahluko phakathi kwesiphumo soqobo sothungelwano kunye nesiphumo esilindelekileyo sibalwa, kwaye le mpazamo iphinde yasasazwa ngamaleko afihliweyo ukuze kulungiswe izisindo kunye ne-biases ye-neurons. Le nkqubo iphinda iphindwe ide inethiwekhi ifikelele kwisimo sokudibanisa, ngaloo ndlela inciphisa impazamo yokubikezela.

2. I-Stochastic Gradient Descent (SGD) Algorithm: Le algorithm isetyenziselwa ukuqeqesha amanethiwekhi e-neural kunye neeseti ezinkulu zedatha. Esikhundleni sokubala uhlaziyo kwiisindo kunye nokungakhethi kusetyenziswa isethi yoqeqesho lonke, i-SGD ibala olu hlaziyo ngomzekelo woqeqesho omnye kuphela ngexesha, elikhethwe ngokungaqhelekanga. Oku kuvumela uqeqesho olukhawulezayo nolusebenzayo ngakumbi, ngakumbi xa unedatha enkulu.

3. Ubuninzi be-Algorithm ye-Algorithm: Le algorithm isetyenziselwa ukuqeqesha uthungelwano lwe-neural kwimisebenzi yokuhlelwa. Isekwe kumbono wokwandisa amathuba okuba uqikelelo lwenethiwekhi luchanekile, lunikwe iilebhile zoqeqesho ezaziwayo. Ukufezekisa oku, kusetyenziswa umsebenzi welahleko ohlawulisa uqikelelo olungachanekanga kwaye iiparamitha zenethiwekhi zihlengahlengiswa ukuze kuncitshiswe le lahleko. Ubuninzi be-algorithm enokwenzeka isetyenziswa ngokubanzi kuthungelwano lwe-neural kwiingxaki zokubini kunye nokuhlelwa kweeklasi ezininzi.

Ngamafutshane, zisisiseko Kuqeqesho kunye nohlengahlengiso kwezi intanethi. I-algorithm ye-backpropagation, ukwehla kwe-stochastic gradient, kunye ne-algorithm ye-propagation ephezulu yimizekelo nje embalwa ye-algorithms esetyenziswa kulo mmandla. Ngolwazi olwaneleyo kunye nokusetyenziswa kwezi algorithms, kunokwenzeka ukuphuhlisa uthungelwano lwe-neural olukwazi ukufunda kunye nokwenza uqikelelo kwiingxaki ezininzi ezahlukeneyo.

6. Ukusetyenziswa kwe-Artificial Neural Networks kwiinkalo ezahlukeneyo

I-Artificial Neural Networks (ANNs) ibonakalise ukuba sisixhobo esixabisekileyo kwiinkalo ezahlukeneyo ngenxa yokukwazi ukufunda nokuziqhelanisa nedatha. Ezi nethiwekhi, ziphefumlelwe ukusebenza kwengqondo yomntu, zifumene izicelo kwiinkalo ezahlukeneyo njengamayeza, ubunjineli kunye nesayensi yedatha.

Kwezonyango, Ii-ANN zisetyenziselwe ukuxilonga izifo, ukuqikelela i-prognosis yesigulane, kunye nokufumanisa iipatheni ezifihliweyo kwiinkcukacha zeklinikhi. Umzekelo, kuye kwaphuhliswa ii-RNA ezikwaziyo ukubona umhlaza kwasekuqaleni kwimifanekiso yezonyango okanye kuhlalutyo lwemfuza. Ukongeza, ezi nethiwekhi zinokuchonga iipatheni kwiiseti zedatha yezonyango ezinkulu kwaye zincede oogqirha benze izigqibo ezinolwazi malunga nokunyanga izigulane.

Kwinjineli, ii-ANN zisetyenziselwe ukusombulula iingxaki zolawulo oluntsonkothileyo kunye nokuphucula. Umzekelo, uthungelwano lwe-neural luye lwaphuhliswa ukulawula iirobhothi kwiindawo ezitshintshayo, ukuphucula ukusebenza kakuhle kwamandla ezakhiwo, kunye nokwandisa ukusebenza kweenkqubo zemveliso. Olu nxibelelwano, luqeqeshwe ngezixa ezikhulu zedatha, lunokufunda iimodeli ezinzima zemathematika kwaye luvelise izisombululo ezisebenzayo kwiingxaki zobunjineli.

7. Imingeni kunye nokunciphisa i-Artificial Neural Networks

I-Artificial Neural Networks (ANNs) sisixhobo esinamandla kwinkalo yokufunda koomatshini kunye nobukrelekrele bokwenziwa. Noko ke, abanalo ucelomngeni nemida. Ukuqonda le miqobo kubalulekile ukuphumeza izicwangciso eziphucula ukusebenza kunye nokusebenza kakuhle kwee-ANN kwizicelo ezahlukeneyo. Ngezantsi kukho imingeni eqhelekileyo kunye nemida.

1. Ukunqongophala kwedatha: Ii-ANN zifuna isixa esikhulu sedatha ukuqeqesha kunye nokwenza ngokubanzi ngokuchanekileyo. Kwezinye iimeko, kunokuba nzima ukufumana idatha esemgangathweni eyaneleyo yokuqeqesha inethiwekhi ngokufanelekileyo. Oku kunokukhokelela kwiingxaki zokugqithisa kakhulu kunye nokungabikho kokukwazi ukubamba ubunzima bokwenyani bengxaki. Ukuthomalalisa lo mceli mngeni, iindlela zokwandisa idatha ezinjengokujikelezisa, ukuphephuka, kunye nokutshintsha ubungakanani bemifanekiso, kunye neendlela zokufunda zokudlulisa, zinokusetyenziselwa ukomeleza ulwazi olufunyenwe kwimisebenzi efanayo.

2. Isiqalekiso sengxaki yedimensionality: Njengoko inani leempawu okanye izinto eziguquguqukayo kwiseti yedatha zisanda, ii-ANN zinokujongana nobunzima ekubambeni ubudlelwane obunentsingiselo nofanelekileyo. Oku kungenxa yesiqalekiso sobukhulu, obubandakanya ukusasazwa kwedatha kwindawo enomgangatho ophezulu. Ukukhwela le ngxaki, ukhetho lweempawu, ukucuthwa kobukhulu kunye neendlela zokulinganisa idatha zinokusetyenziswa.

3. Ixesha lokubala kunye neendleko: Uqeqesho kunye nokuvavanya i-ANN kunokufuna ixesha elininzi kunye nezixhobo zokubala. Oku kunokuba yingxaki, ngakumbi xa usebenza ngeeseti ezinkulu zedatha okanye ufuna impendulo ngexesha lokwenyani. Ukuphucula ixesha lokubala kunye neendleko ngumngeni omkhulu xa kuphunyezwa ii-ANN kwizicelo eziphathekayo. Oku kunokufezekiswa ngokuphuhlisa i-algorithms yokufunda esebenzayo, kusetyenziswa ubuchule bokuhambelana, kunye nokukhetha ulwakhiwo olufanelekileyo lwenethiwekhi yengxaki ekhoyo.

Nangona le mingeni kunye nezithintelo, ii-ANN ziyaqhubeka zisisixhobo esibalulekileyo kwinkalo yobukrelekrele bokwenziwa. Ukuqonda nokulungisa le miqobo kuya kusivumela ukuba sisebenzise ngokupheleleyo amandla e-ANN kwaye soyise imida yangoku. Ngokusetyenziswa ngokufanelekileyo kobuchule kunye nezicwangciso, iziphumo ezingalunganga zinokuncitshiswa kwaye izibonelelo ezinokuthi zinikwe olu nxibelelwano kwiinkalo ezahlukeneyo zesicelo zinokunyuswa.

Umxholo okhethekileyo- Cofa Apha  Ziziphi iinguqulelo zeWireshark?

8. Izinto eziluncedo kunye nezingeloncedo kwiiNethiwekhi zeNeural Artificial

Uthungelwano lwe-Artificial neural network (RNN) ziinkqubo zobuntlola ezenziweyo ezizama ukulinganisa ukusebenza kwengqondo yomntu. Olu nxibelelwano lwenziwe ngamacandelo amaninzi okusebenza abizwa ngokuba zii-neurons, ezilungelelaniswe zibe ziileya ezidityanisiweyo ukuze kuqhutywe kwaye kuhlalutywe izixa ezikhulu zedatha. Ngezantsi kukho ezininzi:

Inzuzo:

1. Isakhono sokufunda: IiRNNs ziyakwazi ukufunda ngokuzimeleyo ngempendulo eqhubekayo. Oku kuthetha ukuba banokuqhelana nedatha entsha kwaye baphucule ukuchaneka kwabo kunye nokusebenza ngexesha.

2. Ukusetyenzwa ngokufanelekileyo kwedatha entsonkothileyo: Ii-RNN zibonakalise ukuba zisebenza kakuhle ekuqhubeni imiqulu emikhulu yedatha enzima, njengemifanekiso, umbhalo okanye imiqondiso. Ukukwazi kwabo ukuqaphela iipatheni kunye nokwenza uhlalutyo lokuxela kwangaphambili kubenza babe sisixhobo esinamandla kwizicelo ezahlukeneyo.

3. Ukunyamezela iimpazamo kunye nokuqina: Ngenxa yobume bazo kwiileyile ezidibeneyo, ii-RNN zinamandla okubuyisela nokulungisa iimpazamo kwidatha yokufaka. Oku kubavumela ukuba babe nokunyamezela iimpazamo kwaye banikeze ukuqina okukhulu kwiimeko apho idatha ingafezekanga.

Iingxaki:

1. Ifuna isixa esikhulu sedatha: Ukuze iRNN ifunde kwaye ijikelezise ngokufanelekileyo, idinga inani elikhulu ledatha yoqeqesho. Ukuba akukho mizekelo yoqeqesho yaneleyo ekhoyo, ukusebenza kwenethiwekhi kunokuchaphazeleka.

2. Uqeqesho olucothayo kunye nexesha lokwenziwa: Uqeqesho lwe-RNNs lunokuba yinkqubo ecothayo kwaye ixabisa kakhulu, ngakumbi xa isiza kuthungelwano olunzulu oluneeleya ezininzi. Ngaphaya koko, ixesha lokwenziwa kwe-RNN linokuba lide kakhulu xa lithelekiswa nezinye iindlela zokufunda koomatshini.

3. Ukunqongophala kokutolika: Nangona iiRNNs zikwazi ukwenza imisebenzi ngempumelelo, inkqubo yazo yokwenza izigqibo ayisoloko itolika lula ngabantu. Oku kwenza kube nzima ukuqonda ukuba uqikelelo olunikiweyo okanye isiphumo sifikelwa njani na, nto leyo enokunciphisa ukusetyenziswa kwayo kwiimeko ezithile ezinovakalelo.

Isishwankathelo, iiNethiwekhi ze-Neural Artificial zibonelela ngezinto ezininzi eziluncedo, ezifana nomthamo wazo wokufunda, ukusebenza kakuhle ekusetyenzweni kwedatha entsonkothileyo, kunye nokomelela kwazo. Nangona kunjalo, bakwanazo nezingeloncedo, ezifana nesidingo sedatha enkulu yoqeqesho, uqeqesho olude kunye namaxesha okubulawa, kunye nokunqongophala kokutolika ekwenzeni izigqibo. Ukuqwalaselwa kwezi ngqwalasela, ii-RNN zisisixhobo esixabisekileyo kwinkalo yobukrelekrele bokwenziwa, kodwa ukuphunyezwa kwazo kufuneka kuxhaswe luvavanyo olunyamekileyo nokuqwalasela ezi. iingeniso kunye nokungalunganga.

9. Ukuthelekisa phakathi kweeNethiwekhi zeNeural Artificial kunye nengqondo yomntu

Uthungelwano lwe-neural yokwenziwa ziimodeli ezidityanisiweyo ezenzelwe ukulinganisa ukusebenza kwengqondo yomntu. Nangona ezi nethiwekhi zikwazi ukwenza imisebenzi entsonkothileyo yokufunda kunye nepateni yokuqaphela, kukho umahluko osisiseko phakathi kothungelwano lwe-neural eyenziweyo kunye nengqondo yomntu.

Okokuqala, uthungelwano lwe-neural eyenziweyo lwenziwe ngothotho lweeyunithi zokusetyenzwa ezidityanisiweyo ezibizwa ngokuba zii-neurons ezenziweyo. Ezi neurons zifumana iimpawu zegalelo ezinobunzima, zisebenze ngokusebenzisa umsebenzi wokuvula, kwaye zithumele isignali yokuphuma. Ngokungafaniyo nengqondo yomntu, apho iineuron zinobuchule obuphezulu kunye nebhayoloji, iineuron ezenziweyo ziiyunithi zemathematika ezenza imisebenzi yezibalo.

Omnye umahluko obalulekileyo yindlela inethiwekhi ye-neural eyenziwe ngayo efunda ngayo. Ezi nethiwekhi zifunda ngenkqubo ebizwa ngokuba yi-training, apho zinikezelwa ngeseti yedatha yegalelo kunye nezisindo zoqhagamshelwano phakathi kwee-neurons zihlengahlengiswa ukuze kuncitshiswe umahluko phakathi kwesiphumo esilindelekileyo kunye nesiphumo sangempela. Kwelinye icala, ingqondo yomntu ifunda ngenkqubo entsonkothileyo neguqukayo, ebandakanya intsebenziswano yeebhiliyoni zeeseli zemithambo-luvo kunye noqhagamshelo lwe-synaptic.

Isishwankathelo, nangona iinethiwekhi ze-neural ezenziweyo zibonakalise ukuba zizixhobo ezinamandla kwiindawo ezifana ukuqondwa kwelizwi, umbono wekhompyutha kunye nokulungiswa kolwimi lwendalo kusekude ukuhambelana namandla kunye nokusebenza kakuhle kwengqondo yomntu. Njengoko uphando luqhubela phambili kunye nokusebenza kwengqondo kuqondwa ngcono, inkqubela phambili ebonakalayo inokwenzeka ekudaleni uthungelwano lwe-neural olufana ngakumbi nengqondo yomntu.

10. Izixhobo kunye neelwimi zokucwangcisa ukuphuhlisa iNethiwekhi yeNeural yeArtificial

Ngaphakathi kwintsimi yobukrelekrele bokwenziwa, uthungelwano lwe-neural eyenziweyo sisixhobo esisisiseko sokusetyenzwa kunye nokuhlalutya izixa ezikhulu zedatha. Ukuphuhlisa uthungelwano lwe-neural yokwenziwa, kuyimfuneko ukuba nezixhobo ezifanelekileyo kunye neelwimi zokucwangcisa. Ngezantsi kukho iinketho ezisetyenziswa ngokubanzi namhlanje:

  • TensorFlow: Eli thala leencwadi elivulelekileyo eliphuhliswe nguGoogle lelinye lawona adumileyo ekuphumezeni uthungelwano lwe-neural. Ivumela iimodeli ukuba ziphuhliswe kwiilwimi ezinje ngePython okanye iJava, kwaye ibonelela ngezixhobo ezahlukeneyo kunye nemisebenzi yoqeqesho kunye novavanyo lothungelwano lwe-neural eyenziweyo.
  • I-Keras: Le yi-API yezinga eliphezulu eliqhuba phezulu kwe-TensorFlow. Yaziwa ngokusebenziseka kwayo ngokulula kunye nokukwazi kwayo ukwenza iinethiwekhi ze-neural ngokukhawuleza nangokulula. I-Keras iyahambelana nePython kwaye ikuvumela ukuba wakhe iimodeli usebenzisa iibhloko ezichazwe kwangaphambili okanye ezenziwe ngokwezifiso.
  • I-PyTorch: Lo mthombo ovulekileyo wethala leencwadi lokufunda ngomatshini, ophuhliswe nguFacebook, ubonelela ngeqonga eliguquguqukayo lophuhliso lweenethwekhi ze-neural zokwenziwa. I-PyTorch ivumela abadwelisi benkqubo ukuba basebenzise izixhobo eziqhelekileyo zePython kwaye inikezela ngojongano olubonakalayo lolwakhiwo kunye neemodeli zoqeqesho.

Ukongeza kolu khetho, zininzi ezinye izixhobo kunye neelwimi zeprogram ezifumanekayo kuphuhliso lweenethiwekhi ze-neural ezenziweyo. Ezinye zazo ziquka iCaffe, iTheano, iMATLAB, kunye ne-scikit-learn, nganye ineempawu zayo kunye neendlela zayo. Kubalulekile ukuvavanya iimfuno kunye neemfuno zeprojekthi ngaphambi kokukhetha esona sixhobo sifanelekileyo kunye nolwimi.

Isishwankathelo, ukuba nezixhobo ezifanelekileyo kunye neelwimi zokucwangcisa kubalulekile kuphuhliso olusebenzayo lwenethiwekhi ye-neural eyenziweyo. I-TensorFlow, iiKeras, kunye nePyTorch zezinye iinketho ezidumileyo ezibonelela ngeempawu ezahlukeneyo kunye nezibonelelo. Nangona kunjalo, kukwabalulekile ukuphonononga iinketho ezahlukeneyo ngokuxhomekeke kwiimfuno ezithile zeprojekthi nganye. [END-HTML-MARKUP]

11. Ukubaluleka kweeNethiwekhi ze-Neural Artificial kwi-intelligence yokwenziwa

I-Artificial Neural Networks (ANN) yinxalenye ebalulekileyo yobukrelekrele bokwenziwa (AI). Olu nxibelelwano lwenzelwe ukulinganisa ukusebenza kwengqondo yomntu kwaye luyakwazi ukufunda nokuziqhelanisa ngamava. Ukubaluleka kwayo kukukwazi ukusombulula iingxaki ezinzima, ukwenza izibikezelo kunye nokwenza izigqibo ezisekelwe kwiimali ezinkulu zedatha.

Enye yeenzuzo eziphambili zee-ANN kukukwazi kwazo ukuqaphela iipateni kunye nokukhupha ulwazi olufanelekileyo kwiiseti zedatha enkulu. Oku kuvumela oomatshini ukuba babone iintsingiselo, bahlele ulwazi kwaye benze izigqibo ezichanekileyo. Ii-ANN zikwasebenza kakhulu ekunakekelweni kwentetho, ukusetyenzwa kolwimi lwendalo, kunye nombono wekhompyutha.

Umxholo okhethekileyo- Cofa Apha  Ungena njani kwiwebhu ye-Grindr: Ukungena kwi-Grindr.

Ukufumana okuninzi kwii-ANN, kubalulekile ukuba neseti yedatha eyaneleyo kunye nolungiselelo olulungileyo lwangaphambili. Kuyacetyiswa ukuba ulungise kwangaphambili idatha, uyilungelelanise, kwaye uyahlulahlulwe ngoqeqesho kunye neeseti zovavanyo. Ngaphaya koko, ukukhetha ulwakhiwo lwenethiwekhi olululo kunye neeparamitha zoqeqesho olululo lubalulekile kwiziphumo ezizezona zilungileyo. Ngethamsanqa, zininzi izixhobo ze-AI kunye namathala eencwadi akhoyo enza lula le nkqubo, njengeTensorFlow, Keras, kunye nePyTorch.

12. Inkqubela phambili yakutsha nje kwiiNethiwekhi zeNeural Artificial

Kukho ezininzi eziye zayiguqula kakhulu intsimi yobukrelekrele bokwenziwa. Ezi nkqubela phambili ziye zavumela uphuhliso lweendlela ezisebenza kakuhle nezichanekileyo zokusombulula iingxaki ezininzi kwiindawo ezifana nokulungiswa kolwimi lwendalo, umbono wekhompyutha, kunye nokuqatshelwa kwepateni.

Enye yenkqubela phambili ephawulekayo kukuphunyezwa kothungelwano lwe-convolutional neural network (CNN). Ezi intanethi ziye zaba yireferensi esemgangathweni kwinkalo yombono wekhompyutheni kwaye ibonise ukusebenza okugqwesileyo kwimisebenzi efana nokuhlelwa komfanekiso kunye nokufunyanwa kwezinto. Ii-CNN zisebenzisa i-convolutional layers ukukhupha iimpawu ezifanelekileyo kwimifanekiso yegalelo, elandelwa ngamaleko aqhagamshelwe ngokupheleleyo ukwenza ulwahlulo lokugqibela. Olu lwakhiwo lubonakalise ukuba lusebenza kakhulu kwaye lugqithise iindlela ezininzi zemveli ekusetyenzweni kwemifanekiso.

Olunye ukuqhubela phambili okubalulekileyo kusetyenziso lwenethiwekhi ye-neural eqhubekayo (RNN) kulungiso lolwimi lwendalo. Ii-RNN ziyakwazi ukwenza imodeli yolandelelwano kunye nokuxhomekeka okwexeshana, nto leyo eyenza ukuba ibe luncedo ngakumbi kwimisebenzi efana nokuguqulela ngomatshini, ukuqondwa kwentetho, kunye nokuveliswa kokubhaliweyo. Uhlobo olunamandla kakhulu lwe-RNN yimodeli yokuqwalasela, evumela ukuba inethiwekhi igxininise kwiindawo ezithile zegalelo ngexesha lenkqubo yokuvelisa. Le ndlela ikhokelele kuphuculo olubonakalayo kumgangatho weenguqulelo zoomatshini kwaye yenze ukuba uphuculo kwiindawo ezifana nokuveliswa kwemibhalo engezantsi kunye nokudibanisa intetho.

13. Iingqwalasela zokuziphatha kunye nobumfihlo ekusetyenzisweni kweeNethiwekhi zeNeural Artificial

Ukuziphatha kunye nokuqwalaselwa kweemfihlo yimiba emibini ebalulekileyo ekufuneka ithathelwe ingqalelo xa usebenzisa i-Artificial Neural Networks (ANN). Ezi zixhobo zinamandla zobukrelekrele bokwenziwa zinamandla okwenza impembelelo enkulu kwiinkalo ezahlukeneyo, kubandakanya impilo, ubulungisa, kunye neshishini. Ngoko ke, kubalulekile ukujongana nemiba yokuziphatha kunye nemfihlo ehambelana nokuphunyezwa kwayo.

Omnye weyona mingeni ingundoqo yeenqobo ezisesikweni kukuqinisekisa ukungafihli kunye nokucaciswa kwezigqibo ezenziwe zii-ANN. Njengoko ziyi-algorithms ezintsonkothileyo, kuyimfuneko ukuqonda indlela ekufikelelwa ngayo kwisigqibo esithile. Oku kuthetha ukuba abaphuhlisi kufuneka benze iimodeli ezinokutolika, ukuze siqonde kwaye siqinisekise iziphumo ezifunyenweyo.

Ukongeza, ubumfihlo bedatha ikwayinqaku eliphambili ekufuneka liqwalaselwe. Ii-ANN zifuna ulwazi oluninzi ukuze ziqeqeshe kwaye zilungelelanise iiparamitha zazo. Kubalulekile ukuqinisekisa ukuba idatha esetyenziswayo ikhuselwe, inqanda ukubhengezwa okanye ukusetyenziswa kakubi kolwazi lomntu siqu okanye olubuthathaka. Oku kubandakanya ukuphumeza iindlela zokufihla amagama kunye neendlela zokufihla, kunye nokwamkelwa kwemigaqo-nkqubo yabucala eqinile ukuqinisekisa ubumfihlo bedatha.

14. Ikamva le-Artificial Neural Networks kwi-teknoloji kunye noluntu

Uthungelwano lwe-neural eyenziweyo lubonise amandla amakhulu kwiinkalo ezahlukeneyo zobugcisa kunye noluntu. Ngokuqhubela phambili kobukrelekrele bokwenziwa, olu nxibelelwano luba sisixhobo esisisiseko sokusombulula iingxaki ezintsonkothileyo kunye nokwenza imisebenzi ebingenakucingelwa ngaphambili. Ukukwazi kwabo ukufunda kunye nokuziqhelanisa kubenza balungele ukusetyenzwa kweedatha ezininzi kunye nokuqonda iipateni ixesha langempela.

Kwixesha elizayo, iinethiwekhi ze-neural ezenziweyo kulindeleke ukuba zidlale indima ebalulekileyo kuphuhliso lobuchwephesha. Ukusetyenziswa kwayo kuya kunabela kumasimi anje ngamayeza, iirobhothi, ishishini leemoto kunye nokhuseleko, phakathi kwabanye. Umzekelo, kwezamayeza, uthungelwano lwe-neural lunokusetyenziselwa ukufumanisa izifo ngokuchanekileyo ngakumbi kwaye lukhawulezise uphando kunyango olutsha. Kushishino lweemoto, uthungelwano lwe-neural kulindeleke ukuba ludlale indima ephambili ekuqhubeni ngokuzimeleyo, ukuvumela izithuthi ukuba zenze izigqibo zexesha lokwenyani ngokusekelwe kuhlalutyo lwendawo yazo.

Ngokunjalo, ifuthe lenethiwekhi ye-neural eyenziweyo eluntwini Iya kubaluleka. Emsebenzini, ukuzenzela okuqhutywa zezi networks kulindeleke ukuba kube nefuthe elikhulu kwindlela esenza ngayo umsebenzi wethu. Eminye imisebenzi yesiqhelo inokwenziwa ngoomatshini, ikhulula abantu ukuba benze imisebenzi entsonkothileyo neyilayo. Nangona kunjalo, imiceli mngeni enxulumene nemigaqo yokuziphatha kunye nobumfihlo nayo iya kuvela, kuba ukusetyenziswa kwezi nethiwekhi kubandakanya ukuphathwa kweedatha ezininzi ezinobuntununtunu. Ngoko ke, kuya kufuneka ukuseka imimiselo kunye neziqinisekiso zokukhusela amalungelo abantu kunye nokuqinisekisa ukusetyenziswa ngokufanelekileyo kwezi teknoloji.

Isishwankathelo, uthungelwano lwe-neural eyenziweyo yindlela enamandla yobukrelekrele bokwenziwa eye yaguqula iindawo ezininzi kwiminyaka yakutshanje. Ezi intanethi ziphefumlelwe kukusebenza kwengqondo yomntu kwaye zineengqimba ezininzi zeenodi ezidibeneyo ezivumela ukusetyenzwa kolwazi ngendlela ehambelana kakhulu. Ngokufunda kunye nokwenza ngcono iintsimbi zothungelwano, uthungelwano lwe-neural eyenziweyo lunokufunda ukuqaphela iipateni ezinzima kwaye zenze izigqibo ezichanekileyo.

Uthungelwano lwe-neural eyenziweyo lungqineke lusebenza ngokukodwa kwimisebenzi efana nokuqondwa kwentetho, ukusetyenzwa komfanekiso, ukuguqulelwa koomatshini, kunye noqikelelo lothotho lwexesha. Ukukwazi kwabo ukuziqhelanisa kunye nokufunda kwiimali ezinkulu zedatha kubenza babe sisixhobo esixabisekileyo sokusombulula iingxaki ezintsonkothileyo ezifuna uhlalutyo lwedatha enkulu kunye nokucubungula.

Njengoko itekhnoloji iqhubeka nokuhambela phambili, iinethiwekhi ze-neural ezenziweyo ziya kuqhubeka nokuvela kunye nokuphucula. Uphando kule nkalo lujolise ekwenzeni amanethiwekhi asebenze ngakumbi, ngokukhawuleza kwaye achanekileyo, okuya kuvumela ukusetyenziswa kwawo kuluhlu olubanzi lwamashishini kunye nemimandla yokufunda.

Nangona uthungelwano lwe-neural eyenziweyo lulubuchule obuthembisayo, lukwanika imingeni kunye nemida. Uqeqesho olu nxibelelwano lunokufuna inani elikhulu ledatha kunye nexesha le-computing, kwaye ukutolika iziphumo ngamanye amaxesha kunokuba nzima ngenxa yokungabikho elubala kwindlela ekufikelelwa ngayo kwisigqibo.

Ngaphandle kwale mingeni, uthungelwano lwe-neural eyenziweyo luhlala lusesona sixhobo sinomdla kwaye sinamandla kwicandelo lobukrelekrele bokwenziwa. Ukukwazi kwayo ukwenza ulwazi oluntsonkothileyo kunye nokwenza imisebenzi entsonkothileyo kukhokelele kwinkqubela phambili ebalulekileyo kuluhlu olubanzi lwezifundo. Njengoko siqhubeka nokufumanisa usetyenziso olutsha kunye nokuphucula itekhnoloji yenethiwekhi ye-neural eyenziweyo, siqinisekile ukubona inkqubela phambili echulumancisayo kwixesha elizayo.