די "פאַרבאַנד פון סעריע, פּאַראַלעל און געמישט רעסיסטאָרס מיט עקסערסייזיז" איז אַ פונדאַמענטאַל באַגריף אין די פעלד פון עלעקטראָניק און קרייַז טעאָריע. אין דער זוכן צו פֿאַרשטיין די נאַטור און פּראָפּערטיעס פון עלעקטריקאַל סערקאַץ, עס איז יקערדיק צו פֿאַרשטיין ווי רעסיסטאָרס ינטעראַקט ווען זיי שטעלן אין פאַרשידענע קאַנפיגיעריישאַנז. צי אין סעריע, פּאַראַלעל אָדער אַ געמישט קאָמבינאַציע פון ביידע, די פאַרשידענע פֿאַרבינדונג מעטהאָדס ימפּלאַמענט די גאַנץ קעגנשטעל און די קראַנט פלאָוינג דורך די קרייַז. אין דעם אַרטיקל, מיר וועלן ויספאָרשן די פּרינסאַפּאַלז הינטער רעסיסטאָר פאַרבאַנד, דיסקוטירן די חשבונות פארלאנגט צו באַשטימען קראַנט און גאַנץ קעגנשטעל וואַלועס, און אַדרעס אַ סעריע פון פּראַקטיש עקסערסייזיז צו העלפן פאַרשטאַרקן טעאָרעטיש קאַנסעפּס. גרייט זיך צו ונטערטוקנ זיך אין די פאַסאַנייטינג וועלט פון רעסיסטאָר אַסאָוסייישאַנז און אַנטדעקן ווי צו שטעלן סערקאַץ עפֿעקטיוו און עפעקטיוו.
1. הקדמה צו די אַססאָסיאַטיאָן פון סעריע, פּאַראַלעל און געמישט רעסיסטאָרס
יקערדיק וויסן אין די פעלד פון עלעקטרע איז פארשטאנד ווי רעסיסטאָרס קאָננעקטעד אין סעריע און פּאַראַלעל ביכייוו. רעסיסטאָרס זענען עלעקטריקאַל קאַמפּאָונאַנץ אָפט געניצט צו קאָנטראָלירן די לויפן פון קראַנט אין אַ קרייַז. דער אַרטיקל גיט אַ וועגווייַזער, וואָס דערקלערט ווי צו רעכענען די גאַנץ קעגנשטעל אין יעדער פאַל.
אין אַ סעריע רעסיסטאָר פאַרבאַנד, די רעסיסטאָרס זענען קאָננעקטעד איינער נאָך די אנדערע, אַזוי אַז קראַנט פלאָוז דורך יעדער רעסיסטאָר קאָנסעקוטיווע. צו רעכענען די גאַנץ קעגנשטעל אין אַ סעריע קרייַז, מיר פשוט לייגן די קעגנשטעל וואַלועס פון יעדער עלעמענט. די ווערט פון די גאַנץ קעגנשטעל אין אַ פאַרבאַנד פון סעריע רעסיסטאָרס איז גלייַך צו די סאַכאַקל פון די וואַלועס פון יעדער קעגנשטעל. דעם טיפּ פון פאַרבאַנד איז קאַמאַנלי געניצט ווען די גאַנץ קעגנשטעל פון אַ קרייַז דאַרף זיין געוואקסן.
אויף די אנדערע האַנט, אין אַ פּאַראַלעל רעסיסטאָר פאַרבאַנד, די רעסיסטאָרס זענען פארבונדן צו פּראָסט טערמינאַלס, אַזוי אַז דער קראַנט איז צעטיילט צווישן זיי. צו רעכענען די גאַנץ קעגנשטעל אין אַ פּאַראַלעל קרייַז, מיר קענען נוצן די פאָרמולע 1 / רט = 1 / ר 1 + 1 / ר 2 + ... + 1 / רן, ווו רט איז די גאַנץ קעגנשטעל און ר 1, ר 2, ... רן זענען די וואַלועס פון יחיד קעגנשטעל. אין אַ פּאַראַלעל פאַרבאַנד, די גאַנץ קעגנשטעל וועט שטענדיק זיין ווייניקער ווי קיין פון די יחיד קעגנשטעל.
צום סוף, אַ געמישט קעגנשטעל פאַרבאַנד איז איינער וואָס קאַמביינז ביידע רעסיסטאָרס אין סעריע און אין פּאַראַלעל. צו רעכענען די גאַנץ קעגנשטעל אין אַ פאַרבאַנד פון געמישט קעגנשטעל, די פאלגענדע סטעפּס מוזן זיין נאכגעגאנגען: 1) באַשטימען די סעגמאַנץ אין סעריע און רעכענען זייער גאַנץ קעגנשטעל, 2) באַשטימען די סעגמאַנץ אין פּאַראַלעל און רעכענען זייער גאַנץ קעגנשטעל, און 3) רעכענען די גאַנץ קעגנשטעל פון די גאנצע פאַרבאַנד דורך אַדינג די גאַנץ קעגנשטעל פון די סעריע און פּאַראַלעל סעגמאַנץ. דעם טיפּ פון פאַרבאַנד איז קאַמאַנלי געניצט אין מער קאָמפּליצירט סערקאַץ ווו אַ קאָמבינאַציע פון ריזיסטערז איז פארלאנגט.
2. וואָס איז סעריע רעסיסטאָר אַססאָסיאַטיאָן?
אַססאָסיאַטיאָן פון רעסיסטאָרס אין סעריע איז אַ פּראָסט קאַנפיגיעריישאַן געניצט אין עלעקטריקאַל סערקאַץ ווו עטלעכע רעסיסטאָרס זענען פארבונדן איינער נאָך די אנדערע. אין דעם קאַנפיגיעריישאַן, די קראַנט פלאָוינג דורך יעדער רעסיסטאָר איז די זעלבע, אָבער די גאַנץ וואָולטידזש איז צעטיילט צווישן זיי אין פּראָפּאָרציע צו זייער יחיד קעגנשטעל וואַלועס. דעם מיטל אַז די גאַנץ קעגנשטעל איז די סאַכאַקל פון די יחיד קעגנשטעל און קענען זיין לייכט קאַלקיאַלייטיד מיט די צונעמען פאָרמולע.
צו רעכענען די גאַנץ קעגנשטעל אין אַ פאַרבאַנד פון סעריע רעסיסטאָרס, פשוט לייגן די קעגנשטעל וואַלועס. פֿאַר בייַשפּיל, אויב מיר האָבן דריי ריזיסטערז מיט וואַלועס פון 10 אָומז, 20 אָומז און 30 אָומז, די גאַנץ קעגנשטעל וואָלט זיין 60 אָומז (10 + 20 + 30 = 60). דאָס איז נוציק אין דיטערמאַנינג ווי דער פאַרבאַנד פון ריזיסטערז וועט ווירקן די קראַנט לויפן און וואָולטידזש קאַפּ אין אַ קרייַז.
עס איז וויכטיק צו טאָן אַז ווען רעסיסטאָרס זענען אין סעריע, די קראַנט וואָס פלאָוינג דורך יעדער איז די זעלבע, אָבער די וואָולטידזש איז צעטיילט צווישן זיי. דאָס מיינט אַז דער רעסיסטאָר מיט די העכסטן ווערט וועט דערפאַרונג די העכסטן וואָולטידזש קאַפּ, בשעת די רעסיסטאָר מיט די לאָואַסט ווערט וועט האָבן די לאָואַסט וואָולטידזש קאַפּ. דעם פאַרמאָג פון סעריע קעגנשטעל פאַרבאַנד איז געניצט אין פילע עלעקטראָניש דעוויסעס און סערקאַץ צו קאָנטראָלירן קראַנט לויפן און וואָולטידזש פאַרשפּרייטונג. דעריבער, עס איז קריטיש צו פֿאַרשטיין ווי צו רעכענען די גאַנץ קעגנשטעל און פֿאַרשטיין ווי עס וועט ווירקן די וואָולטידזש פאַרשפּרייטונג אין דעם קרייַז..
3. קעראַקטעריסטיקס און פּראָפּערטיעס פון די אַססאָסיאַטיאָן פון סעריע רעסיסטאָרס
דער פאַרבאַנד פון קעגנשטעל אין סעריע איז אַ פונדאַמענטאַל באַגריף אין די לערנען פון עלעקטריקאַל סערקאַץ. אין דעם קאַנפיגיעריישאַן, די רעסיסטאָרס זענען פארבונדן איינער נאָך די אנדערע, אַזוי אַז דער שטראם פלאָוז דורך זיי אַלע אין דער זעלביקער ריכטונג. דאָס ימפּלייז אַז די קראַנט פלאָוינג דורך יעדער רעסיסטאָר איז די זעלבע, בשעת די וואָולטידזש איז צעטיילט פּראַפּאָרשאַנאַלי צווישן זיי.
איינער פון די מערסט וויכטיק קעראַקטעריסטיקס פון סעריע פאַרבאַנד איז אַז די גאַנץ קעגנשטעל איז גלייַך צו די סאַכאַקל פון די יחיד קעגנשטעל. דאָס איז ווייַל די קראַנט וואָס פלאָוינג דורך יעדער רעסיסטאָר איז די זעלבע, און די גאַנץ קעגנשטעל איז די גאַנץ אָפּאָזיציע וואָס קראַנט יקספּיריאַנסיז איבער די קרייַז.
צו רעכענען די גאַנץ קעגנשטעל פון אַ סעריע פאַרבאַנד, פשוט לייגן די וואַלועס פון אַלע די קעגנשטעל. עס איז וויכטיק צו טאָן אַז די מעזשערמאַנט וניץ מוזן זיין קאָנסיסטענט, צי אָומז אָדער קילאָאָהמס. אין דערצו, עס איז מעגלעך צו נוצן אָהם געזעץ צו באַשטימען דעם קראַנט וואָס פלאָוינג דורך יעדער רעסיסטאָר אָדער די וואָולטידזש איבער אַ געגעבן רעסיסטאָר, ווי לאַנג ווי לפּחות איינער פון די וואַלועס איז באַוווסט.
4. כעזשבן פון די גאַנץ קעגנשטעל אין אַ אַססאָסיאַטיאָן פון סעריע רעסיסטאָרס
צו רעכענען די גאַנץ קעגנשטעל אין אַ פאַרבאַנד פון סעריע ריזיסטערז, עס איז נייטיק צו לייגן די קעגנשטעל וואַלועס פון יעדער פון די סעריע ריזיסטערז. אין אַ סעריע פאַרבאַנד, די רעסיסטאָרס זענען געשטעלט איינער נאָך די אנדערע, אַזוי אַז דער שטראָם וואָס גייט דורך זיי איז די זעלבע פֿאַר זיי אַלע. דורך אַדינג די קעגנשטעל, די גאַנץ קעגנשטעל פון די פאַרבאַנד איז באקומען.
פֿאַר יז פון כעזשבן, עס איז וויכטיק צו געדענקען אַז אין אַ סעריע פאַרבאַנד, די גאַנץ קעגנשטעל איז שטענדיק גרעסער ווי די גרעסטע קעגנשטעל פאָרשטעלן. אויך אויב אַלע רעסיסטאָרס האָבן די זעלבע ווערט, די גאַנץ קעגנשטעל וועט זיין גלייַך צו די יחיד קעגנשטעל געמערט מיט די נומער פון רעסיסטאָרס.
א באַטאָנען בייַשפּיל וועט העלפן צו בעסער פֿאַרשטיין דעם פּראָצעס. רעכן מיר האָבן דריי רעסיסטאָרס אין סעריע: ר 1 = 10 אָום, ר 2 = 20 אָום און ר 3 = 30 אָום. צו געפֿינען די גאַנץ קעגנשטעל, מיר פשוט לייגן די קעגנשטעל וואַלועס: 10 + 20 + 30 = 60 אָום. דעריבער, די גאַנץ קעגנשטעל אין דעם פאַרבאַנד איז 60 אָום. עס איז וויכטיק צו טאָן אַז דעם אופֿן אַפּלייז אויסשליסלעך צו אַסאָוסייישאַנז פון סעריע רעסיסטאָרס און נישט צו אנדערע טייפּס פון קאַנפיגיעריישאַנז.
5. וואָס איז די פּאַראַלעל קעגנשטעל אַססאָסיאַטיאָן?
א פּאַראַלעל רעסיסטאָר פאַרבאַנד באשטייט פון קאַנעקטינג עטלעכע רעסיסטאָרס אין אַן עלעקטריקאַל קרייַז אין פּאַראַלעל. דאָס מיינט אַז אַלע רעסיסטאָרס זענען פארבונדן גלייַך צווישן די זעלבע צוויי פונקטן אין דעם קרייַז. ניט ענלעך די סעריע אַססאָסיאַטיאָן, ווו די שטראם איז דער זעלביקער אין אַלע די קעגנשטעל, אין אַ פאַרבאַנד פון פּאַראַלעל רעסיסטאָרס די וואָולטידזש איז די זעלבע אין אַלע די קעגנשטעל.
צו רעכענען די גאַנץ קעגנשטעל פון אַ פאַרבאַנד פון פּאַראַלעל קעגנשטעל, די פאָרמולע איז געניצט:
1/רטאָטאַל = 1/ר1 + 1/ר2 + … + 1/רן
ווו Rtotal איז די גאַנץ קעגנשטעל פון דעם פאַרבאַנד און R1, R2, ..., Rn זענען די יחיד קעגנשטעל וואָס זענען טייל פון די פאַרבאַנד. אַמאָל די גאַנץ קעגנשטעל איז קאַלקיאַלייטיד, עס איז מעגלעך צו באַשטימען דעם קראַנט אין די קרייַז מיט אָהם געזעץ, איך = V / רטאָטאַל, ווו איך איז די קראַנט, V איז די וואָולטידזש געווענדט צו דער קרייַז און רטאָטאַל איז די גאַנץ קעגנשטעל.
עס איז וויכטיק צו האַלטן אין זינען אַז אין אַ פאַרבאַנד פון פּאַראַלעל רעסיסטאָרס, די ווערט פון די גאַנץ קעגנשטעל וועט שטענדיק זיין ווייניקער ווי די ווערט פון די קלענסטער קעגנשטעל אין דעם פאַרבאַנד. דאָס איז ווייַל די קראַנט איז צעטיילט צווישן די פאַרשידענע קעגנשטעל, וואָס מאכט די גאַנץ קעגנשטעל צו פאַרמינערן. דעם פאַרמאָג מאכט פּאַראַלעל קעגנשטעל אַסאָוסייישאַנז נוציק אין סיטואַטיאָנס ווו די גאַנץ קעגנשטעל פון אַ קרייַז דאַרף זיין רידוסט.
6. פּראָפּערטיעס און חשבונות אין די אַססאָסיאַטיאָן פון פּאַראַלעל רעסיסטאָרס
אַ וויכטיק פאַרמאָג פון פּאַראַלעל רעסיסטאָרס איז אַז די גאַנץ קעגנשטעל איז שטענדיק ווייניקער ווי קיין פון די יחיד רעסיסטאָרס. דעם מיטל אַז דורך דזשוינינג רעסיסטאָרס אין פּאַראַלעל, די ריזאַלטינג קעגנשטעל דיקריסאַז. פֿאַר בייַשפּיל, אויב מיר האָבן צוויי רעסיסטאָרס פון 10 אָום יעדער, די גאַנץ קעגנשטעל אין פּאַראַלעל וואָלט זיין 5 אָום.
צו רעכענען די גאַנץ קעגנשטעל אין אַ קרייַז מיט רעסיסטאָרס אין פּאַראַלעל, מיר קענען נוצן די פאלגענדע פאָרמולע:
Rt = 1/(1/ר1 + 1/ר2 + … + 1/רn)
וואו רt איז די גאַנץ קעגנשטעל און ר1, R2, …, Rn זיי זענען די יחיד רעסיסטאָרס אין פּאַראַלעל. דעם כעזשבן קענען זיין סימפּלאַפייד אויב אַלע די קעגנשטעל איז גלייַך, זינט דעמאָלט מיר קענען נוצן די פאָרמולע:
Rt =ר/ען
ווו R איז די קעגנשטעל פון יעדער פון די יחיד רעסיסטאָרס און n איז די גאַנץ נומער פון רעסיסטאָרס אין פּאַראַלעל.
7. וואָס איז די געמישט קעגנשטעל אַססאָסיאַטיאָן?
די אַססאָסיאַטיאָן פון געמישט רעסיסטאָרס איז אַ וויכטיק באַגריף אין די פעלד פון עלעקטראָניק און עלעקטרע. עס רעפערס צו די קאָמבינאַציע פון רעסיסטאַנסעס ביידע אין סעריע און פּאַראַלעל אין אַן עלעקטריקאַל קרייַז. דאָס אַלאַוז מער קאָמפּליצירט סערקאַץ צו זיין געבויט און אַטשיווד ספּעציפיש קעגנשטעל וואַלועס. עס איז יקערדיק צו פֿאַרשטיין ווי דער פאַרבאַנד פון געמישט קעגנשטעל אַרבעט אין סדר צו פּלאַן און סאָלווען פּראָבלעמען אין די סערקאַץ.
עס זענען צוויי טייפּס פון געמישט קעגנשטעל אַסאָוסייישאַנז: סעריע און פּאַראַלעל. אין אַ סעריע פאַרבאַנד, רעסיסטאָרס זענען געשטעלט איינער נאָך דעם אנדערן אין די קרייַז, אַזוי אַז די קראַנט פלאָוז דורך זיי סאַקווענטשאַלי. דאָס מיינט אַז די גאַנץ קעגנשטעל פון די פאַרבאַנד איז גלייַך צו די סאַכאַקל פון די יחיד קעגנשטעל. אויף די אנדערע האַנט, אין אַ פּאַראַלעל פאַרבאַנד, די רעסיסטאָרס זענען געשטעלט אין פאַרשידענע צווייגן פון די קרייַז און די קראַנט איז צעטיילט צווישן זיי. אין דעם פאַל, די גאַנץ קעגנשטעל פון די פאַרבאַנד איז קאַלקיאַלייטיד אַנדערש.
די גאַנץ קעגנשטעל פון אַ פאַרבאַנד פון געמישט קעגנשטעל אין סעריע איז קאַלקיאַלייטיד דורך אַדינג די קעגנשטעל וואַלועס פון יעדער קאָמפּאָנענט. עס איז וויכטיק צו געדענקען אַז די קראַנט דורך יעדער רעסיסטאָר איז די זעלבע ווייַל עס איז קיין קראַנט דיווייישאַן אין אַ סעריע קרייַז. אויף די אנדערע האַנט, אין אַ פּאַראַלעל פאַרבאַנד, די גאַנץ קעגנשטעל איז קאַלקיאַלייטיד אין אַ מער קאָמפּליצירט וועג. די פאלגענדע פאָרמולע איז געניצט: 1 / רט = 1 / ר 1 + 1 / ר 2 + ... + 1 / רן, ווו רט איז די גאַנץ קעגנשטעל און ר 1, ר 2, ... רן זענען די יחיד קעגנשטעל אין פּאַראַלעל. קאַלקיאַלייטינג די גאַנץ קעגנשטעל אין אַ פאַרבאַנד פון געמישט רעסיסטאָרס איז יקערדיק פֿאַר דיטערמאַנינג קראַנט לויפן און מאַכט אין אַ קרייַז.
8. כעזשבן פון די גאַנץ קעגנשטעל אין אַ געמישט קעגנשטעל אַססאָסיאַטיאָן
צו רעכענען די גאַנץ קעגנשטעל אין אַ געמישט קעגנשטעל פאַרבאַנד, עס איז נייטיק צו נאָכפאָלגן עטלעכע שליסל טריט. ערשטער, מיר מוזן ידענטיפיצירן די פאַרשידענע טייפּס פון ריזיסטערז אין דעם קרייַז, צי זיי זענען אין סעריע אָדער פּאַראַלעל. דאָס וועט לאָזן אונדז צו צולייגן די קאָראַספּאַנדינג פאָרמולאַס.
צווייטנס, עס איז יקערדיק צו באַשטימען די ווערט פון יעדער יחיד רעסיסטאָר. דעם קענען זיין געטאן דורך לייענען די קאָליר קאָודז אויף די רעסיסטאָרס אָדער ניצן אַ מולטימעטער צו מעסטן זייער קעגנשטעל. עס איז וויכטיק צו געדענקען אַז סעריע רעסיסטאַנסאַז זענען מוסיף, בשעת פּאַראַלעל רעסיסטאַנסאַז זענען קאַלקיאַלייטיד לויט די פאלגענדע פאָרמולע: 1 / רטאָטאַל = 1 / ר 1 + 1 / ר 2 + 1 / ר 3 ...
צום סוף, מיט די וואַלועס פון יעדער יחיד רעסיסטאָר און ניצן די צונעמען פאָרמולאַס, מיר קענען רעכענען די גאַנץ קעגנשטעל פון די געמישט קרייַז. דער ווערט דערציילט אונדז ווי די קאָמבינאַציע פון אַלע רעסיסטאָרס אַפעקץ די לויפן פון קראַנט דורך דעם קרייַז. עס איז וויכטיק צו טאָן אַז דער כעזשבן איז באזירט אויף די האַשאָרע אַז אַלע רעסיסטאָרס זענען פארבונדן ריכטיק און אַז עס זענען קיין נאָך אָדער יבערמאַכן רעסיסטאָרס וואָס זענען נישט גענומען אין חשבון.
9. פּראַקטיש עקסערסייזיז אויף אַססאָסיאַטיאָן פון רעסיסטאָרס אין סעריע
צו סאָלווען פּראָבלעמען פון אַססאָסיאַטינג רעסיסטאָרס אין סעריע, עס איז וויכטיק צו נאָכפאָלגן עטלעכע יקערדיק סטעפּס. ערשטער, מיר מוזן ידענטיפיצירן די רעסיסטאָרס וואָס זענען פארבונדן אין סעריע, דאָס איז איינער נאָך די אנדערע אָן קיין פּאַראַלעל קשר. דערנאָך, מיר דאַרפֿן צו מאַכן זיכער אַז מיר וויסן די ווערט פון יעדער פון די ריזיסטערז ינוואַלווד.
צו רעכענען די גאַנץ קעגנשטעל פון אַ סעריע קרייַז, מיר פשוט לייגן די ווערט פון אַלע די ריזיסטערז. פֿאַר בייַשפּיל, אויב מיר האָבן דריי רעסיסטאָרס אין סעריע מיט וואַלועס פון 10 אָומז, 20 אָומז און 30 אָומז, די גאַנץ קעגנשטעל וועט זיין 60 אָומז (10 + 20 + 30 = 60).
עס איז וויכטיק צו געדענקען אַז אין אַ פאַרבאַנד פון סעריע רעסיסטאָרס, די קראַנט פלאָוינג דורך אַלע די רעסיסטאָרס איז די זעלבע. דעם מיטל אַז די גאַנץ קעגנשטעל קענען זיין געוויינט אין די יקווייזשאַנז צו רעכענען די גאַנץ קראַנט אָדער וואָולטידזש קאַפּ אַריבער יעדער פון די יחיד רעסיסטאָרס.
10. פּראַקטיש עקסערסייזיז אויף אַססאָסיאַטיאָן פון פּאַראַלעל רעסיסטאַנסעס
צו סאָלווע פּאַראַלעל קעגנשטעל פאַרבאַנד פּראָבלעמס, עס איז יקערדיק צו פֿאַרשטיין ווי צו רעכענען די גאַנץ קעגנשטעל פון אַ קרייַז. ערשטער פון אַלע, עס איז וויכטיק צו געדענקען אַז אין אַ circuito paralelo, די רעסיסטאָרס זענען פארבונדן אין פּאַראַלעל מיט יעדער אנדערע, וואָס מיינט אַז די גאַנץ קראַנט איז צעטיילט צווישן די יחיד רעסיסטאָרס. דערצו, אַלע פּאַראַלעל רעסיסטאָרס האָבן די זעלבע פּאָטענציעל חילוק.
א פּראָסט צוגאַנג צו סאַלווינג דעם טיפּ פון פּראָבלעם איז צו נוצן די פּאַראַלעל גאַנץ קעגנשטעל פאָרמולע: 1 / רט = 1 / ר 1 + 1 / ר 2 + ... + 1 / רן. דאָ, Rt רעפּראַזענץ די גאַנץ קעגנשטעל און R1, R2, ... Rn זענען די יחיד קעגנשטעל. מיט דעם פאָרמולע, מיר קענען רעכענען די גאַנץ קעגנשטעל ווען די וואַלועס פון די יחיד קעגנשטעל זענען באַוווסט.
אין אַדישאַן צו די פאָרמולע, עס זענען אנדערע נוציק מכשירים פֿאַר סאַלווינג פּראָבלעמס מיט פּאַראַלעל קעגנשטעל פאַרבאַנד. איינער פון זיי איז אַ מולטימעטער, וואָס ווערט גענוצט צו מעסטן די פאַקטיש קעגנשטעל פון די יחיד רעסיסטאָרס. דאָס קען העלפֿן באַשטעטיקן אויב די טעאָרעטיש חשבונות זענען ריכטיק און דיטעקט קיין קשר ערראָרס. עס איז אויך קעדייַיק צו נוצן אַ קרייַז דיאַגראַמע צו וויזשוואַלייז ווי די ריזיסטערז זענען פארבונדן אין פּאַראַלעל.
11. פּראַקטיש עקסערסיסעס פון געמישט קעגנשטעל אַססאָסיאַטיאָן
אין דעם אָפּטיילונג, פּראַקטיש עקסערסייזיז וועט זיין דערלאנגט צו לערנען ווי צו סאָלווע די געמישט קעגנשטעל פאַרבאַנד פּראָבלעמס. די עקסערסייזיז לאָזן איר צו אָנווענדן די טעאָרעטיש וויסן ביז אַהער קונה אויף דער טעמע און פֿאַרבעסערן פּראָבלעם סאַלווינג סקילז.
צו סאָלווע די געמישט קעגנשטעל פאַרבאַנד עקסערסייזיז, עס איז וויכטיק צו נאָכפאָלגן די פאלגענדע סטעפּס:
- ידענטיפיצירן די סעריע און פּאַראַלעל ריזיסטערז אין דעם קרייַז.
- רעכענען די גאַנץ קעגנשטעל פון די סעריע און פּאַראַלעל רעסיסטאָרס.
- צולייגן די צונעמען פאָרמולאַס צו באַקומען די גאַנץ קעגנשטעל פון די קרייַז און די פּאַרטיייש קעראַנץ אין יעדער קעגנשטעל.
- קוק די רעזולטאַטן באקומען, ניצן Ohms און Kirchhoff ס געזעצן אויב נייטיק.
עס איז וויכטיק צו געדענקען אַז צו סאָלווע די עקסערסייזיז איז פארלאנגט אַ גוט באַפֿעל פון די געזעצן פון פאַרבאַנד פון קעגנשטעל אין סעריע און פּאַראַלעל, ווי געזונט ווי די קאָראַספּאַנדינג פאָרמולאַס. דערצו, עס איז קעדייַיק צו נוצן אַ קאַלקולאַטאָר צו פאַסילאַטייט חשבונות.
12. אַפּפּליקאַטיאָנס און אַדוואַנטידזשיז פון די אַססאָסיאַטיאָן פון רעסיסטאָרס אין עלעקטריקאַל סירקויץ
דער פאַרבאַנד פון קעגנשטעל איז אַ פונדאַמענטאַל באַגריף אין עלעקטריקאַל סערקאַץ. אין דעם אַרטיקל, מיר וועלן ויספאָרשן די פאַרשידענע אַפּלאַקיישאַנז און אַדוואַנטידזשיז פון ניצן רעסיסטאָר פאַרבאַנד אין עלעקטריקאַל סערקאַץ.
א פון די אַפּליקאַציעס די מערסט פּראָסט פאַרבאַנד פון רעסיסטאָרס איז די רעדוקציע פון די גאַנץ קעגנשטעל אין אַ קרייַז. ווען רעסיסטאָרס זענען געשטעלט אין סעריע, די גאַנץ קעגנשטעל מוסיף זיך. אויף די אנדערע האַנט, ווען געשטעלט אין פּאַראַלעל, די גאַנץ קעגנשטעל דיקריסאַז. דאָס איז ספּעציעל נוציק ווען איר ווילן צו באַקומען אַ ספּעציפיש קעגנשטעל אין אַ קרייַז.
אן אנדער מייַלע פון די אַססאָסיאַטיאָן פון רעסיסטאָרס איז אַז עס אַלאַוז די עלעקטריקאַל אָפּצאָל צו זיין פונאנדערגעטיילט מער יפישאַנטלי. אין אַ סעריע קרייַז, די קראַנט איז דער זעלביקער אין אַלע רעסיסטאָרס. אין קאַנטראַסט, אין אַ פּאַראַלעל קרייַז, די קראַנט איז צעטיילט צווישן די רעסיסטאָרס, רידוסינג די דרוק אויף יעדער רעסיסטאָר. דאָס קען זיין ספּעציעל נוציק ווען ארבעטן מיט שפּירעוודיק קאַמפּאָונאַנץ וואָס קענען נישט שעפּן הויך קעראַנץ.
13. קאָנסידעראַטיאָנס צו נעמען אין חשבון ווען ארבעטן מיט קעגנשטעל אַססאָסיאַטיאָנס
ווען ארבעטן מיט רעסיסטאָר אַסאָוסייישאַנז, עס איז יקערדיק צו נעמען אין חשבון אַ סעריע פון קאַנסידעריישאַנז צו ענשור די ריכטיק אָפּעראַציע פון די קרייַז. א פאַרבאַנד פון רעסיסטאָרס איז געניצט צו באַקומען אַ אַנדערש עקוויוואַלענט קעגנשטעל ווערט ווי אַז פון אַ איין רעסיסטאָר. דאָ זענען עטלעכע וויכטיק באַטראַכטונגען:
1. ידענטיפיצירן די טיפּ פון פאַרבאַנד: איידער ארבעטן מיט אַ רעסיסטאָר פאַרבאַנד, עס איז נייטיק צו ידענטיפיצירן צי עס איז אַ סעריע אָדער פּאַראַלעל פאַרבאַנד. אין אַ סעריע אַססאָסיאַטיאָן, די רעסיסטאָרס זענען פארבונדן איינער נאָך די אנדערע, בשעת אין אַ פּאַראַלעל פאַרבאַנד, אַלע די רעסיסטאָרס טיילן די זעלבע קשר פונקטן.
2. רעכענען די עקוויוואַלענט קעגנשטעל ווערט: אַמאָל דער טיפּ פון פאַרבאַנד איז יידענאַפייד, די עקוויוואַלענט קעגנשטעל ווערט מוזן זיין קאַלקיאַלייטיד. אין אַ סעריע פאַרבאַנד, די עקוויוואַלענט קעגנשטעל איז גלייַך צו די סאַכאַקל פון אַלע די קעגנשטעל. אין אַ פּאַראַלעל פאַרבאַנד, די פאַרקערט פון די עקוויוואַלענט קעגנשטעל איז גלייַך צו די סאַכאַקל פון די פאַרקערט פון אַלע די קעגנשטעל.
3. שעפּן מאַכט ריכטיק: עס איז וויכטיק צו נעמען אין חשבון די מאַכט וואָס די רעסיסטאָרס קענען וויטסטאַנד. אויב אַ רעסיסטאָר קען נישט צעלאָזן די דזשענערייטאַד מאַכט, עס קען זיין דאַמידזשד אָדער אפילו פארברענט. דעריבער, עס איז קריטיש צו קאָנטראָלירן די טעכניש ספּעסאַפאַקיישאַנז פון די ריזיסטערז און ענשור אַז די גאַנץ מאַכט דזשענערייטאַד דורך די קרייַז איז ין פּאַסיק לימאַץ.
14. קאַנקלוזשאַנז און רעקאַמאַנדיישאַנז אויף די אַססאָסיאַטיאָן פון קעגנשטעל אין סעריע, פּאַראַלעל און געמישט מיט עקסערסייזיז
אין מסקנא, דער פאַרבאַנד פון קעגנשטעל אין סעריע, פּאַראַלעל און געמישט איז אַ פונדאַמענטאַל באַגריף אין די לערנען פון עלעקטריקאַל סערקאַץ. דורך דעם פּראָצעס, עס איז מעגלעך צו רעכענען די גאַנץ קעגנשטעל פון אַ קרייַז און באַשטימען די קראַנט וואָס גייט דורך אים. אַדדיטיאָנאַללי, די וואָולטידזש טראפנס איבער יעדער פון די יחיד רעסיסטאָרס קענען זיין אַנאַלייזד.
עס איז וויכטיק צו געדענקען אַז ווען אַססאָסיאַטיאָן רעסיסטאָרס אין סעריע, די גאַנץ עקוויוואַלענט קעגנשטעל איז די סאַכאַקל פון אַלע יחיד רעסיסטאַנסאַז. אויף די אנדערע האַנט, ווען אַססאָסיאַטיאָן רעסיסטאָרס אין פּאַראַלעל, די עקוויוואַלענט גאַנץ קעגנשטעל איז די פאַרקערט פון די סאַכאַקל פון די פאַרקערט פון די קעגנשטעל. אין דעם פאַל פון געמישט אַסאָוסייישאַנז, עס איז נייטיק צו צעלייגנ די קרייַז אין טייל סעריע און טייל פּאַראַלעל, און דעמאָלט רעכענען די גאַנץ קעגנשטעל.
מיר רעקאָמענדירן צו דורכפירן פּראַקטיש עקסערסייזיז צו קאָנסאָלידירן די קונה וויסן. ניצן עלעקטריקאַל קרייַז סימיאַלייטערז און אָנליין קעגנשטעל קאַלקולאַטאָרס צו פאַרגיכערן דיין חשבונות. פּונקט אַזוי, עס איז וויכטיק צו באַשטעטיקן די רעזולטאַטן באקומען דורך ניצן אָהם געזעץ און די קאָראַספּאַנדינג פאָרמולאַס. פילן פריי צו קאָנטראָלירן נאָך טוטאָריאַלז און ביישפילן פֿאַר אַ בעסער פארשטאנד! פון דער ענין!
צו פאַרענדיקן, די אַססאָסיאַטיאָן פון סעריע, פּאַראַלעל און געמישט רעסיסטאָרס איז אַ פונדאַמענטאַל טעמע אין די פעלד פון עלעקטראָניק און עלעקטריקאַל סערקאַץ. דורך דעם אַרטיקל, מיר האָבן יקספּלאָרד די באַסיקס פון יעדער טיפּ פון פאַרבאַנד און ווי צו רעכענען די גאַנץ קעגנשטעל אין יעדער פאַל.
עס איז וויכטיק צו הויכפּונקט אַז מאַסטערינג די קאַנסעפּס איז יקערדיק פֿאַר די פּלאַן און אַנאַליסיס פון סערקאַץ, ווי געזונט ווי פֿאַר סאַלווינג פּראָבלעמס שייַכות צו רעסיסטיוויטי אין עלעקטריקאַל סיסטעמען. צי איר לערנען עלעקטריקאַל ינזשעניעריע אָדער נאָר ווילן צו בעסער פֿאַרשטיין ווי סערקאַץ אַרבעט, די וויסן וועט זיין זייער נוציק.
איבער דעם אַרטיקל, מיר פאָרשטעלן פּראַקטיש ביישפילן און עקסערסייזיז צו פאַרשטאַרקן די דיסקאַסט קאַנסעפּס. געדענק אַז קעסיידערדיק פיר איז שליסל צו גאָר אַסימאַלייט די טעקניקס. דורך ארבעטן אויף פּראָבלעם סאַלווינג, איר וועט פֿאַרשטאַרקונג דיין סקילז און יקספּאַנד דיין פארשטאנד פון די טעמע.
אין קיצער, אַססאָסיאַטיאָן פון סעריע, פּאַראַלעל און געמישט רעסיסטאָרס מיט עקסערסייזיז איז אַ ווערטפול מיטל פֿאַר יענע אינטערעסירט אין די פעלד פון עלעקטראָניק. מיר האָפן אַז דער אַרטיקל איז געווען נוציק און מאָוטאַווייץ איר צו דעווע דיפּער אין די פאַסאַנייטינג וועלט פון עלעקטריקאַל סערקאַץ. פאָרזעצן צו ויספאָרשן און יקספּאַנדינג דיין וויסן אין דעם געגנט און אַנטדעקן די קאַונטלאַס אַפּלאַקיישאַנז עס קענען פאָרשלאָגן.
איך בין Sebastián Vidal, אַ קאָמפּיוטער ינזשעניר לייַדנשאַפטלעך וועגן טעכנאָלאָגיע און דיי. דערצו, איך בין דער באשעפער פון tecnobits.com, ווו איך טיילן טוטאָריאַלז צו מאַכן טעכנאָלאָגיע מער צוטריטלעך און פאַרשטיייק פֿאַר אַלעמען.