Ukufunda okujulile kuzibeke njengelinye lamagatsha avelele kulo mkhakha ubuhlakani bokwenziwa kanye nokucutshungulwa kolimi lwemvelo eminyakeni yamuva. Le nqubo yokufunda yomshini isuselwe kumanethiwekhi amakhulu e-neural okwenziwa, akwazi ukufunda nokuqonda amaphethini ayinkimbinkimbi kumasethi amakhulu wedatha. Kulesi sihloko, sizohlola ngokuningiliziwe ukuthi kuyini ukufunda okujulile, ukuthi kusebenza kanjani, nokuthi yiziphi ezinye zezinhlelo zakho zokusebenza ezifanele kakhulu. okwamanje.
1. Isingeniso Sokufunda Okujulile: Incazelo nomongo
Ukufunda okujulile kuyigatsha lomkhakha we ukuhlakanipha okungekhona okwangempela osekuyithuluzi elinamandla lokuxazulula izinkinga eziyinkimbinkimbi. Kusekelwe embonweni wokuthuthukisa ama-algorithms okufunda komshini namamodeli angafunda futhi amele ulwazi ngendlela efanayo nendlela ubuchopho bomuntu obuqhuba ngayo. Ngokufunda okujulile, kungenzeka ukuqeqesha amasistimu ukuze abone amaphethini, enze izibikezelo, futhi enze izinqumo ngezinga eliphezulu lokunemba.
Esimeni samanje, ukufunda okujulile kufakazele ukuthi kusebenza ngempumelelo ikakhulukazi ezindaweni ezinjengokubona ngekhompyutha kanye nokucutshungulwa kolimi lwemvelo. Ngenxa yama-algorithms afana namanethiwekhi e-convolutional neural namamodeli olimi aguqulayo, intuthuko enkulu yenziwe emisebenzini efana nokutholwa kwento ezithombeni, ukuhumusha ngomshini, nokukhiqizwa kombhalo.
Ukuze uqonde futhi usebenzise ukufunda okujulile, udinga ukujwayelana nemibono eyisisekelo efana namanethiwekhi okwenziwa emizwa, imisebenzi yokuvula, ama-algorithm okuthuthukisa, nokusabalalisa emuva. Ngaphezu kwalokho, kubalulekile ukwazi imiklamo ehlukene yenethiwekhi ye-neural ekhona, njengamanethiwekhi e-convolutional neural kanye namanethiwekhi we-neural aphindaphindiwe. Ngezifundo, imibhalo, nezibonelo ezingokoqobo, ungafunda ukusebenzisa amathuluzi okufunda ajulile nemitapo yolwazi efana ne-TensorFlow ne-PyTorch ukuze uxazulule izinkinga zangempela.
2. Ukufunda ngomshini vs. Ukufunda Okujulile: Umehluko Obalulekile
Ukufunda ngomshini nokufunda ngokujulile amagama amabili avame ukusetshenziswa ngokushintshana lapho kukhulunywa ngobuhlakani bokwenziwa kanye nokuhlaziywa kwedatha. Kodwa-ke, nakuba zombili zisekelwe embonweni wemishini yokufundisa ukuze ifunde ngokuzimele, kunomehluko omkhulu phakathi kwayo.
Omunye umehluko omkhulu usekujuleni kwe inethiwekhi yemizwa esetshenziswa endleleni ngayinye. Ekufundeni komshini, amanethiwekhi we-neural angaxaki kangako nezakhiwo ezingajulile zisetshenziselwa ukucubungula nokufunda kudatha. Ngakolunye uhlangothi, ekufundeni okujulile, amanethiwekhi emizwa ayinkimbinkimbi futhi ajulile asetshenziswa, okuvumela ukufunda okuyinkimbinkimbi kanye nekhono elikhulu lokubona amaphethini nezici kudatha.
Omunye umehluko oyinhloko phakathi kwazo zombili izindlela yinani ledatha edingekayo. ukuqeqeshwa. Ekufundeni komshini, imiphumela eyamukelekayo ingafinyelelwa ngamasethi edatha amancane, kuyilapho ekufundeni okujulile, inani elikhulu ledatha liyadingeka ukuze kutholwe imiphumela emihle. Lokhu kungenxa yokuthi amanethiwekhi e-neural ajulile ayakwazi ukufunda ukumelwa okuyinkimbinkimbi kwedatha, kodwa adinga inani elikhulu lezibonelo ukwenza kanjalo.
Kafushane, nakuba ukufunda komshini nokufunda okujulile kwabelana ngesisekelo semishini yokufundisa ukuze ifunde ngokuzenzakalelayo, iyahluka ngobunkimbinkimbi benethiwekhi ye-neural esetshenziswayo kanye nenani ledatha edingekayo ekuqeqesheni. Ukufunda okujulile kunikeza indlela eyinkimbinkimbi nenwebekayo, ekwazi ukubona amaphethini ayinkimbinkimbi nezici kudatha, kodwa ngezindleko zokudinga amasethi edatha amakhulu ukuze aqeqeshwe. Ngakolunye uhlangothi, ukufunda ngomshini kufaneleka kakhulu uma amasethi edatha emancane noma ubunkimbinkimbi bedatha bungekho phezulu.
3. I-Neural Network Architectures ekuFundeni Okujulile
Zibalulekile ekuthuthukisweni kwezinhlelo zobuhlakani bokwenziwa eziya ngokuba nzima nezinembayo. Lezi zakhiwo zichaza ukwakheka nokuhleleka kwamanethiwekhi e-neural, okuvumela ukucutshungulwa okusebenzayo kwenani elikhulu ledatha kanye nokukhipha izici ezifanele. Ngezansi kunezakhiwo ezintathu ezisetshenziswa kabanzi ekufundeni okujulile.
Isakhiwo sokuqala esiphawulekayo yi-Convolutional Neural Network (CNN). Lesi sakhiwo sisetshenziswa kakhulu emisebenzini yokubona ikhompuyutha efana nokubonwa kwesithombe nokutholwa kwento. Idizayini yayo isuselwe kuzindlalelo ze-convolutional ezisebenzisa izihlungi ukuze kukhishwe izici zendawo ezithombeni. Lezi zici zihlanganiswa ukuze zakhe umfanekiso osezingeni eliphezulu, obese usetshenziselwa ukwenza umsebenzi othile.
- Izici eziyinhloko zama-CNN:
- Izendlalelo ze-Convolutional zokukhipha isici esisebenzayo.
- Ukuhlanganisa izendlalelo ukunciphisa usayizi wedatha.
- Izendlalelo ezixhunywe ngokugcwele ukwenza umsebenzi othile.
Enye i-architecture efanele i-Recurrent Neural Network (RNN). Ngokungafani nama-CNN, ama-RNN asetshenziswa emisebenzini elandelanayo njengokucubungula ulimi lwemvelo nokubonwa kwenkulumo. Idizayini yayo ikuvumela ukuthi usebenzise ulwazi lwengqikithi kusuka ekulandeleni kwangaphambilini ukuze wenze izinqumo okwamanje. Ama-RNN afaka ukuxhumana okuphindelelayo phakathi kwamayunithi e-neural, okuwanika inkumbulo kanye nekhono lokumodela ukuncika kwesikhathi eside.
- Izici eziyinhloko zama-RNN:
- Ukuxhumana okuphindaphindiwe ukuze uthwebule ulwazi lomongo.
- Amayunithi ememori okugcina ulwazi lwesikhathi eside.
- Ukuguquguquka kokusingatha ukulandelana kobude obuguquguqukayo.
Isakhiwo sesithathu okufanele sigqanyiswe yi-Generative Adversarial Neural Network (GAN). Ama-GAN asetshenziswa ezinkingeni zokukhiqiza okuqukethwe, njengokwenza izithombe nemibhalo. Aqukethe amanethiwekhi amabili e-neural, ijeneretha kanye nomcwasi, aqhudelana kugeyimu ye-zero-sum. Ijeneretha izama ukukhiqiza idatha engokoqobo, kuyilapho umbandlululi ezama ukuhlukanisa phakathi kwedatha ekhiqiziwe neyangempela. Lo mncintiswano uqhuba ukufunda nokukhiqizwa kokuqukethwe kwekhwalithi ephezulu.
- Izici eziyinhloko zama-GAN:
- Ikhiqiza inethiwekhi ukudala okuqukethwe namaqiniso.
- Inethiwekhi yobandlululo ukuhlukanisa phakathi kwedatha ekhiqiziwe neyangempela.
- Ukuncintisana phakathi kwamanethiwekhi okuthuthukisa ukufunda.
4. Ukufunda Ama-algorithms Ekufundeni Okujulile
Emkhakheni wokufunda okujulile, ama-algorithms wokufunda ayingxenye ebalulekile yokuxazulula izinkinga eziyinkimbinkimbi. Lawa ma-algorithms asekelwe kumanethiwekhi emizwa okwenziwa adizayinelwe ukulingisa ukuziphatha kobuchopho bomuntu enqubweni yawo yokufunda. Ivumela imishini ukuthi ibone amaphethini futhi ifunde ngokuzimele, iyenze ibe ithuluzi elinamandla ezindaweni ezahlukahlukene njengokubona kwekhompyutha, ukucutshungulwa kolimi lwemvelo, namarobhothi.
Kunezinhlobo ezimbalwa zama-algorithms wokufunda asetshenziswa ekufundeni okujulile, phakathi kwawo okulandelayo okugqamayo:
- I-Convolutional Neural Networks (CNN): Lawa ma-algorithms aklanyelwe ngokukhethekile ukucubungula idatha ngesakhiwo segridi, njengezithombe. Ama-CNN ayakwazi ukubona nokuhlukanisa izinto ezithombeni, akhiphe izici ezisezingeni eliphansi futhi azihlanganise ezendlalelo eziphezulu ukuze athole ukumelwa okuphelele.
- I-Recurrent Neural Networks (RNN): Lawa ma-algorithms asetshenziswa emisebenzini ebandakanya ukulandelana, njenge ukuqashelwa kwezwi noma ukuhumusha okuzenzakalelayo. Ama-RNN ayakwazi ukucubungula idatha ngokulandelana nokugcina inkumbulo yangaphakathi ebavumela ukuthi baqonde umongo wolwazi.
- I-Generative Adversarial Neural Networks (GAN): Lawa ma-algorithms asetshenziselwa ukukhiqiza idatha engokoqobo entsha evela kusethi yedatha yokuqeqeshwa. Ama-GAN akhiwe amanethiwekhi amabili e-neural ancintisanayo: ijeneretha ezama ukudala amasampula okwenziwa kanye nomcwasi ozama ukuhlukanisa phakathi kwamasampuli angempela nawokwenziwa. Lo mncintiswano uqhubeka uthuthukisa ikhwalithi yamasampuli akhiqizwayo.
Ukufunda nokuqonda lokhu kubalulekile ukuze ukwazi ukukusebenzisa ngempumelelo ezinkingeni ezahlukene. Kunezifundo eziningi nezinsiza ezitholakala ku-inthanethi ukuze uthole ulwazi oludingekayo. Ukwengeza, kukhona amathuluzi esofthiwe afana ne-TensorFlow, i-PyTorch, nama-Keras enza ukuthuthukisa nokuphakela . Ngokutadisha nokuzijwayeza, kungenzeka ukusebenzisa lawa ma-algorithms ukuxazulula izinkinga eziyinkimbinkimbi futhi usebenzise amandla aphelele okufunda okujulile.
5. Izinhlobo Zokufunda Okujulile: Ukugadwa, Ukungagadiwe kanye Nokuqiniswa
Ukufunda okujulile kungahlukaniswa ngezinhlobo ezintathu eziyinhloko: okugadwayo, okungagadiwe, nokuqiniswa. Ngayinye yalezi zindlela inezici zayo kanye nokusetshenziswa kwayo emkhakheni wobuhlakani bokwenziwa nokufunda komshini.
Ekufundeni okujulile okugadiwe, imodeli iqeqeshwa kusetshenziswa izibonelo ezinelebula, okungukuthi, idatha yokufaka kanye nezimpendulo ezidingekayo. Umgomo uwukuba imodeli ifunde ukwenza imephu idatha yokokufaka iye emiphumeleni elungile. Le ndlela iwusizo uma unesethi yedatha enelebula futhi ufuna ukwenza umsebenzi wokuhlukanisa noma wokuhlehlisa.
Ngakolunye uhlangothi, ukufunda okujulile okungagadiwe, kugxile ekutholeni amaphethini afihliwe noma izakhiwo kudatha yokufaka ngaphandle kokusebenzisa amalebula. Kulesi simo, imodeli ayinalo ulwazi mayelana nezimpendulo ezifanele futhi umgomo wayo ukuthola isakhiwo sangaphakathi sedatha. Lolu hlobo lokufunda luwusizo ekwenzeni imisebenzi efana nokuhlanganisa, ukunciphisa ubukhulu, noma ukukhiqiza idatha yokwenziwa.
6. Amasu Okuthuthukisa Ekufundeni Okujulile
Ukufunda okujulile emkhakheni wobuhlakani bokwenziwa kuye kwafakazela ukuthi kuyithuluzi elinamandla lokuxazulula izinkinga eziyinkimbinkimbi ezindaweni ezifana nombono wekhompyutha, ukucubungula ulimi lwemvelo, namarobhothi. Kodwa-ke, ukuze uthole okuningi kumamodeli okufunda ajulile, kubalulekile ukusebenzisa amasu wokwenza kahle.
Enye yezindlela ezibaluleke kakhulu ekwenzeni ukufunda okujulile ukusetshenziswa kwemisebenzi efanele yokuvula. Imisebenzi yokuvula isetshenziswa ama-neurons okwenziwa ukwethula ukungahambelani kumamodeli okufunda ajulile. Eminye yemisebenzi evamile yokuvula i-sigmoid activation function, i-ReLU activation function, kanye nomsebenzi wokwenza kusebenze i-softmax. Kubalulekile ukukhetha umsebenzi ofanele wokwenza kusebenze ngokusekelwe ezicini zenkinga okukhulunywa ngayo.
Enye indlela ebalulekile ekusebenzeni kahle kokufunda ukujwayela. Ukuhlelwa kabusha kusiza ukuvimbela ukufakwa ngokweqile, okwenzeka lapho imodeli idlula idatha yokuqeqeshwa futhi ingahlanganisi kahle idatha entsha. Amanye amasu ajwayelekile okujwayeza afaka i-L1 kanye ne-L2 ejwayelekile, ukuthenwa kwesici, kanye nokwengeza idatha. Lawa masu asiza ukulawula inkimbinkimbi yemodeli futhi athuthukise ikhono layo lokukhiqiza idatha entsha ngokunembe kakhudlwana.
7. Ukusetshenziswa okungokoqobo kokuFunda Okujulile
I-Deep Learning, eyaziwa nangokuthi i-Deep Learning, iwumkhakha wokufunda ku-Artificial Intelligence oye wakhula ngokushesha eminyakeni yamuva. Le ndlela isuselwe ekuqeqesheni amanethiwekhi emizwa okwenziwa ukuze afunde futhi enze imisebenzi eyinkimbinkimbi ngokucubungula inani elikhulu ledatha. Kulesi sigaba kuzocutshungulwa ezinye zalezo eziguqula izimboni ezahlukene.
Enye yezinhlelo zokusebenza ezivelele kakhulu ze-Deep Learning isemkhakheni wokubona ngekhompyutha. Ngokusetshenziswa kwamanethiwekhi e-convolutional neural, kungenzeka ukwenza imisebenzi efana nokuqaphela into, ukutholwa kobuso, ukuhlaziya isithombe sezokwelapha, nokunye okuningi. Ngaphezu kwalokho, Ukufunda Okujulile kufakazele ukuthi kusebenza ngempumelelo ekukhiqizeni okuqukethwe okubukwayo, njengokwenza izithombe ezingokoqobo noma ukukhiqiza amavidiyo mbumbulu ajulile.
Enye indawo lapho i-Deep Learning inomthelela omkhulu ekucubungulweni kolimi lwemvelo. Amanethiwekhi avamile we-neural namamodeli okunaka asetshenziselwa ukwenza ukuhumusha komshini, ukuhlaziya imizwa, ukukhiqizwa kombhalo, nama-chatbots ahlakaniphile. Lezi zinhlelo zokusebenza ziguqula indlela esisebenzisana ngayo nemishini futhi zithuthukisa ukuxhumana phakathi kwabantu namakhompyutha ezimweni ezahlukahlukene, njenge insizakalo yekhasimende kanye nosizo lwezokwelapha.
8. Izinselele kanye nemikhawulo ekuFundeni Okujulile
I-Deep Learning, eyaziwa nangokuthi i-Deep Learning, igatsha lezobuhlakani bokwenziwa elibonise imiphumela ethembisayo ezindaweni ezahlukahlukene. Kodwa-ke, ngaphandle kokuthuthuka kwayo, iphinde ibhekane nezinselele ezibalulekile kanye nemikhawulo okufanele kubhekwane nayo ukuze isetshenziswe kangcono.
Enye yezinselelo ezibaluleke kakhulu isidingo senani elikhulu ledatha yokuqeqeshwa. Amamodeli Okufunda Okujulile adinga amasethi edatha amakhulu ukuze afunde amaphethini ayinkimbinkimbi futhi enze izibikezelo ezinembile. Ukuthola nokulebula amanani amakhulu edatha kungase kubize futhi kudle isikhathi. Ngaphezu kwalokho, ukungalingani ekusabalaliseni kwedatha kungase kuthinte kabi ukusebenza kwemodeli.
Enye inselele ukukhetha okufanele kwemodeli yezakhiwo. Kunenqwaba yezakhiwo ze-Deep Learning ezitholakalayo, njengamanethiwekhi e-convolutional neural (CNN) kanye namanethiwekhi e-neural aphindaphindiwe (RNN). Isakhiwo ngasinye sinamandla nobuthakathaka baso, futhi ukukhetha esifaneleka kakhulu somsebenzi othile kungaba inselele. Ukwengeza, izilungiselelo zama-hyperparameter emodeli, njengezinga lokufunda nosayizi wesendlalelo esifihliwe, zingaba nomthelela omkhulu ekusebenzeni kwemodeli.
9. Intuthuko yakamuva kanye nezitayela ku-Deep Learning
Kulesi sigaba, sizohlola intuthuko yakamuva kanye nezitayela emkhakheni we-Deep Learning, igatsha le-Artificial Intelligence elibone ukukhula okuphawulekayo eminyakeni yamuva. Ukufunda Okujulile kusekelwe kumodeli yenethiwekhi ye-neural yokwenziwa futhi kunezinhlelo zokusebenza ezinhlobonhlobo zezimboni, kusukela ekuboneni ngekhompyutha kuya ekucubungulweni kolimi lwemvelo.
Enye yentuthuko ephawuleka kakhulu emkhakheni we-Deep Learning yikhono lamanethiwekhi e-neural ukubona nokwenza okuqukethwe kwe-multimedia. Ngenxa yokuthuthukiswa kwamamodeli afana namanethiwekhi ezitha ezikhiqizayo (ama-GAN), manje sekungenzeka ukudala izithombe ezingokoqobo namavidiyo obekunzima ngaphambilini ukuwahlukanisa kulawo akhiqizwa abantu. Lobu buchwepheshe bunezinhlelo zokusebenza embonini yezokuzijabulisa, njengokudala imiphumela ekhethekile kumamuvi, kanye nasekwakheni kwegeyimu yevidiyo kanye nokulingisa indawo ebonakalayo.
Omunye umkhuba obalulekile ekuFundeni Okujulile ukugxila ekuchazeni okuyimodeli kanye nokuchazwa kwemiphumela. Njengoba izinhlelo zokusebenza ze-AI zivame kakhulu ekuphileni kwansuku zonke, kubalulekile ukuqonda ukuthi izinqumo zenziwa kanjani nokuthi yiziphi izici ezibathonyayo. Intuthuko yakamuva igxile ekuthuthukisweni kwamathuluzi namasu okuqonda nokuchaza izinqumo ezenziwa amamodeli e-Deep Learning. Lokhu kubaluleke kakhulu ezindaweni ezifana nemithi, lapho ukuchazwa kwemiphumela kungaba nomthelela ekuxilongweni nasezinqumweni zokwelashwa.
10. Amathuluzi adumile nemitapo yolwazi ekuFundeni Okujulile
Emkhakheni Wokufunda Okujulile, kunenani elikhulu lamathuluzi adumile nemitapo yolwazi esihlinzeka ngamakhono adingekayo okuthuthukisa amamodeli. ngempumelelo futhi ngempumelelo. Lawa mathuluzi nemitapo yolwazi kusivumela ukuthi sisebenzise ama-algorithms okufunda ajulile, senze imisebenzi yokucubungula idatha, siqeqeshe futhi sihlole amamodeli, phakathi kweminye imisebenzi ebalulekile.
Phakathi kwamathuluzi aphawuleka kakhulu i-TensorFlow, umtapo wolwazi ovulekile owakhiwe yi-Google lokho isinikeza anhlobonhlobo amathuluzi okuqalisa amamodeli okufunda ajulile. I-TensorFlow isihlinzeka ngesixhumi esibonakalayo esisebenziseka kalula esisivumela ukuthi sakhe futhi siqeqeshe amanethiwekhi emizwa we indlela ephumelelayo, ngaphezu kokuba nenani elikhulu lezinsiza kanye nemibhalo etholakalayo eyenza ukusetshenziswa kwayo kube lula.
Elinye ithuluzi elidume kakhulu i-Keras, umtapo wolwazi wezinga eliphezulu obhalwe nge-Python esihlinzeka nge-API elula nenamandla yokudala nokuqeqesha amamodeli okufunda ajulile. I-Keras ibonakala ngokusebenziseka kwayo kalula kanye nekhono layo lokuhlanganisa neminye imitapo yolwazi efana ne-TensorFlow, esivumela ukuthi sisebenzise amandla wakamuva ngaphandle kokulahlekelwa ubulula nokuvumelana nezimo kwe-Keras. Ngaphezu kwalokho, i-Keras isinika inani elikhulu lezendlalelo ezichazwe ngaphambilini nemisebenzi yokwenza kusebenze, okwenza kube lula ukusebenzisa izakhiwo ezihlukene zenethiwekhi ye-neural.
Okokugcina, ngeke sehluleke ukusho i-PyTorch, umtapo wolwazi womshini othuthukiswe yi-Facebook osudume kakhulu emkhakheni wokufunda okujulile. I-PyTorch isinika isikhombimsebenzisi esibonakalayo nesiguquguqukayo esisivumela ukuthi sakhe amamodeli ngesikhathi sangempela, okwenza inqubo yokuhlola neyokulungisa ibe lula. Ngaphezu kwalokho, i-PyTorch inenani elikhulu lamamojula achazwe ngaphambilini nemisebenzi esivumela ukuthi sisebenzise ngokushesha ukwakheka kwenethiwekhi ye-neural ehlukahlukene.
11. Izimiso zokuziphatha kanye nesibopho ekuFundeni Okujulile
Ukufunda okujulile kuyigatsha lobuhlakani bokwenziwa elibonise amandla amakhulu ekuxazululeni izinkinga eziningi emikhakheni eyahlukene. Nokho, ukusetshenziswa kwayo futhi kuphakamisa imibuzo ebalulekile yokuziphatha kanye nesibopho. Kulesi sigaba, sizohlola ezinye zezindaba ezibalulekile ezihlobene nezimiso zokuziphatha kanye nokuzibophezela ekufundeni okujulile.
Esinye sezici eziyinhloko okufanele icatshangelwe ukuchema okungokwemvelo kudatha esetshenziselwa ukuqeqesha amamodeli okufunda ajulile. Njengoba lawa mamodeli afunda kudatha yomlando, uma idatha eyisisekelo ichemile noma iqukethe ukuchema, imodeli ingase ibonise lokhu ekuziphatheni nasezinqumweni zayo. Ngakho-ke, kubalulekile ukwenza ukuhlaziya okuphelele kwedatha yokuqeqeshwa futhi uthathe izinyathelo ezifanele zokunciphisa noma yikuphi ukuchema okungaba khona.
Esinye isici sokuziphatha esibalulekile wukungafihli nokuchazwa kwamamodeli okufunda okujulile. Amamodeli okufunda okujulile avame ukubhekwa “njengamabhokisi amnyama” ngenxa yobunkimbinkimbi bawo kanye nokuntula obala kokuthi afinyelela kanjani ezinqumweni zawo. Lokhu kungaphakamisa izinkinga zesikweletu lapho izinqumo ezibalulekile zenziwa ngokusekelwe emiphumeleni yalawa mamodeli. Kubalulekile ukuthuthukisa amasu namathuluzi asivumela ukuthi siqonde futhi sichaze ukucabanga ngemuva kwezinqumo ezenziwa amamodeli okufunda ajulile.
12. Ikusasa lokufunda okujulile: Imibono nokulindelwe
Ukufunda okujulile kuye kwashintsha indlela imishini engafunda ngayo futhi yenze imisebenzi eyinkimbinkimbi efana nokuqaphela inkulumo, ukubona kwekhompyutha, nokucubungula ulimi lwemvelo. Njengoba lobu buchwepheshe buqhubeka buthuthuka, kuphakama imibuzo mayelana nekusasa labo kanye nalokho esikulindele esingaba nakho. Ngalo mqondo, kunemibono eminingana ethokozisayo okufanele icatshangelwe.
Okunye okulindelwe okuyinhloko esikhathini esizayo sokufunda okujulile ukusetshenziswa kwayo ezindaweni ezifana nemithi, lapho lobu buchwepheshe bungasetshenziswa ekuxilongeni nasekwelapheni izifo. Ikhono lamanethiwekhi e-neural ajulile lokuhlaziya inani elikhulu ledatha yezokwelapha futhi lithole amaphethini afihliwe lingasiza ukuthuthukisa ukunemba kokuxilongwa kwezokwelapha nokwenza ukwelashwa kube ngokwakho ezigulini.
Elinye ithemba elijabulisayo wukusebenza kokufunda okujulile emkhakheni wamarobhothi. Ukuqeqesha amarobhothi anamanethiwekhi e-neural ajulile kungabavumela ukuthi bathole amakhono ayinkimbinkimbi futhi bazivumelanise nezimo ezishintshayo. Isibonelo, irobhothi eliqeqeshwe lisebenzisa ukufunda okujulile lingaba nekhono elikhulu lokuqonda nokusabela olimini lwabantu, livule amathuba amasha ekusebenzisaneni komshini womuntu.
13. Izifundo Ezifakiwe Ezifundweni Ezijulile
Zisivumela ukuthi sihlolisise ukuthi le nqubo isetshenziswe kanjani emikhakheni ehlukene futhi isinikeze izibonelo eziphathekayo zokusebenza kwayo. Ngezansi, sethula izifundo zezibonelo ezintathu ezigqamisa ukusetshenziswa ngempumelelo kwe-Deep Learning emikhakheni eyahlukene.
1. Ukunakwa kwenkulumo: Enye yezindawo lapho Ukufunda Okujulile kube nomthelela omkhulu ekwazisweni kwenkulumo. Ngokusetshenziswa kwamanethiwekhi ajulile e-neural, kube nokwenzeka ukwakha amasistimu angaqonda ngokuzenzakalela futhi alobe inkulumo yomuntu. Lolu hlelo lokusebenza luwusizo ikakhulukazi emisebenzini efana nokuhumusha okuzenzakalelayo, abasizi ababonakalayo noma ukulotshwa kwemibhalo. Ucwaningo lwezehlakalo lubonisa ukuthi Ukufunda Okujulile kuthuthukise kanjani ngokuphawulekayo ukunemba nesivinini sale misebenzi, kunikeze ulwazi olumanzi nolusebenza kahle kubasebenzisi.
2. Ukuxilongwa kwezokwelapha: Enye indawo lapho Ukufunda Okujulile kuye kwenza intuthuko ebonakalayo ekuxilongweni kwezokwelapha. Kusetshenziswa amanethiwekhi emizwa ajulile, amamodeli athuthukisiwe akwazi ukuhlaziya ngokuzenzakalelayo izithombe zezokwelapha, njengama-x ray noma ama-MRIs, ukuze kutholwe izifo noma okungajwayelekile. Lawa mamodeli angakwazi ukukhomba amaphethini acashile angase anganakwa udokotela ongumuntu, okuholela ekuxilongweni okunembe kakhudlwana nokusebenza okuthuthukisiwe kokwelashwa. Ucwaningo lwezehlakalo lukhombisa ukuthi i-Deep Learning iyiguqule kanjani imithi, yenza lula inqubo yokuxilongwa kanye nokwenza ngcono izinga lempilo yeziguli.
3. Ukushayela ngokuzenzakalelayo: Ukushayela ngokuzenzakalelayo kungenye inkambu lapho Ukufunda Okujulile kube nomthelela omkhulu. Ngamanethiwekhi ajulile e-neural, izimoto ezizimele zingahlaziya futhi ziqonde imvelo kuyo isikhathi sangempela, ukwenza izinqumo ezisekelwe ekuchazeni izithombe nedatha yezinzwa. Ucwaningo lwezehlakalo lukhombisa ukuthi lobu buchwepheshe buthuthukise kanjani ukuphepha emgwaqeni, ukunciphisa izingozi nokusetshenziswa kahle kwamandla. Ukufunda Okujulile kubalulekile ukuze kuthuthukiswe ama-algorithms okufunda komshini avumela izimoto ezizimele ukuthi zenze izinqumo ezinembile nezisheshayo ezimeni zethrafikhi eziyinkimbinkimbi.
Lokhu kubonisa umthelela nokuguquguquka kwalolu hlelo ezindaweni ezahlukene. Kusukela ekuqashelweni kwenkulumo kuya ekuxilongweni kwezokwelapha kanye nokushayela uzimele, Ukufunda Okujulile kufakazele ukuthi kuyithuluzi elinamandla lokuxazulula izinkinga eziyinkimbinkimbi kanye nokwenza ngcono ukusebenza kahle kuzo zonke izigaba ezihlukahlukene. Ngokuhlaziya lezi zimo, singaqonda kangcono ukuthi singayisebenzisa kanjani i-Deep Learning kumaphrojekthi amasha nokuthi singawasebenzisa kanjani amandla ako okuguqula indlela esisebenzisana ngayo nobuchwepheshe.
14. Iziphetho kanye nokuzindla ngokuFunda Okujulile
Ukufunda okujulile kufakazele ukuthi kuyithuluzi elinamandla emkhakheni wobuhlakani bokwenziwa kanye nokubonwa kwephethini. Kulesi sihloko, sihlole imiqondo eyinhloko namasu asetshenziswa ekufundeni okujulile, futhi sagqamisa ukubaluleka kwayo emikhakheni eyahlukene njengokucubungula izithombe, ukucutshungulwa kolimi lwemvelo, nokushayela ukuzimela.
Esinye seziphetho eziyinhloko esingazifinyelela ukuthi ukufunda okujulile kudinga inani elikhulu ledatha yokuqeqeshwa ukuze sithole imiphumela enembile. Ngaphezu kwalokho, ulwazi oluhle lwamasu nama-algorithms asetshenzisiwe luyadingeka, kanye nekhono lokukhetha imodeli efanelekile yenkinga ngayinye.
Kafushane, ukufunda okujulile kunikeza indlela ethembisayo yokuxazulula izinkinga eziyinkimbinkimbi ngempumelelo. Nokho, kusenezinselele kanye nemikhawulo kulo mkhakha, njengezindleko zokubala nokuchazwa kwemiphumela. Kubalulekile ukuqhubeka nokucwaninga nokuthuthukisa amasu amasha namathuluzi okunqoba lezi zinselele futhi usebenzise ngokugcwele amandla okufunda okujulile.
Sengiphetha, ukufunda okujulile kuyindlela enamandla emkhakheni wobuhlakani bokwenziwa ethembele kumanethiwekhi ajulile e-neural ukuze kukhishwe izici nokufunda amaphethini ayinkimbinkimbi kudatha ngokuzenzakalelayo. Njengoba ukusetshenziswa kobuhlakani bokwenziwa kuqhubeka ukwanda kuyo yonke imikhakha eyahlukene, ukufunda okujulile kuvela njengethuluzi eliyisisekelo lokucubungula nokuqonda kolwazi ngezinga elikhulu.
Ngokusebenzisa ama-algorithms okufunda ajulile, abacwaningi nabasebenza bangabhekana nezinselele eziyinkimbinkimbi ezifana nokuqaphela inkulumo, umbono wekhompyutha, ukuhumusha ngomshini, phakathi kokunye. Ngaphezu kwalokho, ikuvumela ukuthi uthuthukise ukwenza izinqumo ngokuzenzakalelayo ngokuhlonza okunembile nokuhlukaniswa kwedatha.
Nakuba ukufunda okujulile kunezinselele zako, njengesidingo samasethi amakhulu edatha yokuqeqeshwa kanye nemfuneko yamandla okubala, amandla ako okuguqula imikhakha eyahlukene awanakuphikwa. Njengoba ubuchwepheshe buthuthuka, ukufunda okujulile kungenzeka kuqhubeke nokuvela futhi kutholwe izinhlelo zokusebenza ezintsha ezindaweni ezifana nezokwelapha, amarobhothi, ukuphepha, nokuhlaziya idatha.
Ngamafuphi, ukufunda okujulile kuyindlela entsha enikeza amathemba amahle nezithembiso kubuhlakani bokwenziwa. Ngekhono layo lokuhlaziya nokuqonda idatha eyinkimbinkimbi, kulindeleke ukuthi libe yithuluzi elibalulekile lokuthuthukisa izixazululo ezithuthukile kanye nokwenza ngcono ukusebenza kahle ezimbonini ezihlukahlukene. Ikusasa lokufunda okujulile liyathembisa futhi umthelela wako emphakathini wethu uzokhula ngokuphawulekayo.
Ngingu-Sebastián Vidal, unjiniyela wekhompyutha ozifelayo ngobuchwepheshe kanye ne-DIY. Ngaphezu kwalokho, ngingumdali we tecnobits.com, lapho ngabelana khona ngezifundo zokwenza ubuchwepheshe bufinyeleleke kakhudlwana futhi buqonde wonke umuntu.