Umthetho we-Cosines, owaziwa nangokuthi umthetho we-cosines, iyithuluzi lezibalo eliyisisekelo ku-trigonometry elikuvumela ukuthi unqume ubude bohlangothi olulodwa lukanxantathu ongelona kwesokudla usebenzisa amanani wezinye izinhlangothi ezimbili kanye ne-engeli ephakathi. bona. Lo mthetho usetshenziswa kabanzi emagatsheni ahlukene obunjiniyela nefiziksi, uhlinzeka ngesixazululo esinembayo nesisebenzayo sokuxazulula izinkinga zejiyomethri eziyinkimbinkimbi. Kulesi sihloko, sizohlola isicelo ngokuningiliziwe, izibonelo nokuzivocavoca izibonelo ezingokoqobo zoMthetho wamaCosine, onikeza abafundi ukuqonda okuqinile kwaleli thuluzi lezibalo kanye nokusebenziseka kwalo ezimweni ezihlukahlukene zobuchwepheshe.
1. Isingeniso soMthetho wamaCosine: Ukusetshenziswa kwezinkinga zejometri
I-Law of Cosines iyithuluzi eliyisisekelo ku-geometry ukuxazulula izinkinga okuhlobene nonxantathu. Lo mthetho uthi isikwele sohlangothi olulodwa lukanxantathu silingana nesamba sezikwele zezinye izinhlangothi ezimbili kukhishwe kabili umkhiqizo kanxantathu. izinhlangothi zombili nge-cosine ye-engeli ebhekene nalolo hlangothi. Ngokuqonda nokusebenzisa lo mthetho ngendlela efanele, singakwazi ukuxazulula izinkinga ezihlukahlukene zejometri.
Ukusebenzisa uMthetho wamaCosine ezinkingeni zejiyomethri, isinyathelo sokuqala ukuhlonza unxantathu okukhulunywa ngawo bese ulebula izinhlangothi nama-engeli. Okulandelayo, kufanele sinqume ukuthi yiluphi ulwazi esilunikezwayo nokuthi yiluphi ulwazi esicelwa ukuba siluthole. Ukusuka lapho, singasebenzisa ifomula ye-Law of Cosines ukuxazulula inkinga. Kubalulekile ukukhumbula ukuguqula ama-engeli abe ama-radians uma kunesidingo ngaphambi kokusebenzisa ifomula.
Ithiphu eliwusizo lapho usebenzisa uMthetho we-Cosines ukuxazulula okungaziwa noma uhlangothi esifuna ukuluthola kufomula ngaphambi kokufaka amanani. Lokhu kuzokwenza kube lula ukuxazulula isibalo futhi kugweme amaphutha ezibalweni. Kungase futhi kube usizo ukusebenzisa imisebenzi ye-trigonometric kanye nezakhiwo zonxantathu (njengesamba sama-engeli angaphakathi) ukuze wenze inkinga ibe lula futhi uthole ubudlelwano phakathi kwezinhlangothi nama-engeli. Ukusebenzisa amathuluzi wokubala we-trigonometric nakho kungaba usizo olukhulu ukuze uqinisekise imiphumela etholiwe.
2. Incazelo yezibalo yoMthetho wamaCosine kanye nefomula yawo
Umthetho we-Cosines iyithuluzi lezibalo eliwusizo lokuxazulula onxantathu abangebona abakwesokudla. Lo mthetho usungula ubuhlobo phakathi kobude bezinhlangothi zikanxantathu nama-engeli abhekene nawo. Ifomula ye-Law of Cosines ingasetshenziswa ukuthola zombili ubude bezinhlangothi zikanxantathu nama-engeli ahambisanayo.
Ifomula yoMthetho weCosines ikhonjiswe kanje:
c^2 = a^2 + b^2 – 2ab * cos(C)
Lapho u-"a" kanye no-"b" kuwubude bezinhlangothi ezimbili ezaziwayo, u-"C" i-engeli ebhekene nohlangothi olungaziwa "c" futhi elithi "cos" libhekisela kumsebenzi we-cosine. Le fomula ikuvumela ukuthi uthole amanani ezinhlangothi nama-engeli kanxantathu lapho kwaziwa ubude bezinhlangothi ezimbili ne-engeli ehlukile.
Ukusebenzisa uMthetho we-Cosines, izinyathelo ezilandelayo kufanele zilandelwe:
1. Khomba amanani ezinhlangothi ezaziwayo kanye ne-engeli ebhekene nohlangothi olungaziwa.
2. Faka esikhundleni amanani kufomula ye-Law of Cosines.
3. Rarulula isibalo ukuze uthole inani lohlangothi olungaziwa noma i-engeli ehambisanayo.
4. Phinda inqubo uma kunesidingo kwezinye izinhlangothi noma ama-engeli.
Kubalulekile ukuqaphela ukuthi ama-engeli kufanele akalwe ngama-radians ukuze usebenzise ifomula ye-Law of Cosines, ngakho-ke kungase kudingeke ukuthi uwaguqule uma evezwa ngamadigri. Ukwengeza, uma usebenzisa ifomula, udinga ukunaka izimpawu eziphozithivu nezingezinhle kuzibalo zokugcina ukuze uqinisekise ukuthi uthola inani elilungile. Ukusebenzisa uMthetho wamaCosine kungaba usizo olukhulu ekuxazululeni izinkinga ezibandakanya onxantathu abangebona abakwesokudla kanye nokunquma izici zabo.
3. Ukusetshenziswa koMthetho we-Cosines ku-scalene kanye nonxantathu aba-obtuse
Umthetho we-Cosines yi-theorem ebalulekile esetshenziswa ku-geometry ukuxazulula izinkinga ku-scalene kanye nonxantathu aba-obtuse. Lo mthetho usungula ubuhlobo phakathi kwezinhlangothi nama-engeli kanxantathu, okusivumela ukuba sinqume amanani angaziwa. Ngezansi kunezinyathelo ezidingekayo zokusebenzisa kahle uMthetho wamaCosine kulolu hlobo lonxantathu.
Isinyathelo 1: Thola unxantathu we-scalene noma obtuse. Qiniseka ukuthi unxantathu akasiwo olinganayo futhi akaqondile kwesokudla, njengoba kukhona amafomula athile alezo zimo.
Isinyathelo sesi-2: Yazi amanani atholakalayo. Ukuze usebenzise uMthetho wamaCosine, kuyadingeka ukwazi okungenani izakhi ezintathu kweziyisithupha zikanxantathu: izinhlangothi nama-engeli abhekene nalezo zinhlangothi.
4. Izibonelo zezinkinga ezixazululiwe kusetshenziswa uMthetho wamaCosine
Kulesi sihloko, sizokwethula ezintathu. Lo mthetho uyithuluzi eliyisisekelo ku-trigonometry elisivumela ukubala izinhlangothi noma ama-engeli kanxantathu ongelona kwesokudla kusukela ezilinganisweni zezinhlangothi zawo.
Esibonelweni sokuqala, sizoxazulula inkinga lapho sinikezwa khona izinhlangothi ezintathu zikanxantathu futhi sifuna ukuthola enye yama-engeli. Sizochaza isinyathelo ngesinyathelo usetshenziswa kanjani uMthetho wamaCosine ukuze uthole inani le-engeli engaziwa, unikeze ifomula kanye nomhlahlandlela ocacile wokusetshenziswa kwawo.
Isibonelo sesibili sizobhekana nokuxazulula inkinga lapho sazi khona ama-engeli amabili nohlangothi olulodwa, futhi sifuna ukuthola uhlangothi olusele lukanxantathu. Sizokwethula isu elisebenzayo lokusebenzisa uMthetho wamaCosine futhi sithole inani lohlangothi olungaziwa. Ukwengeza, sizohlinzeka ngamathiphu awusizo okugwema amaphutha avamile lapho usebenza nalo mthetho.
5. Ukubalwa kwezinhlangothi nama-engeli angaziwa ngoMthetho wamaCosine
Umthetho wama-cosines uyithuluzi eliyisisekelo ekubaleni izinhlangothi nama-engeli angaziwa kunxantathu. Lo mthetho usungula ubuhlobo phakathi kwezinhlangothi zikanxantathu nama-engeli abhekene nawo. Ukuze usebenzise umthetho we-cosines, kuyadingeka ukuthi ube nolwazi mayelana okungenani nezakhi ezintathu zikanxantathu: izinhlangothi ezimbili kanye ne-engeli phakathi kwabo.
Isinyathelo sokuqala ekusebenziseni umthetho wama-cosine ukukhomba izakhi ezaziwayo nezingaziwa kunxantathu. Bese, ifomula efanelekile izosetshenziswa ukuthola inani lohlangothi olungaziwa noma i-engeli. Ifomula evamile yomthetho we-cosines ithi:
c^2 = a^2 + b^2 – 2ab * cos(C)
Lapho u-"c" kuwuhlangothi olungaziwa, u-"a" kanye no-"b" kuyizinhlangothi ezaziwayo futhi u-"C" uyi-engeli ebhekene no-"c". Ukuze usebenzise le fomula, kuyadingeka ukuxazulula inani lohlangothi noma i-engeli engaziwa futhi wenze izibalo ezidingekayo. Kutuswa ukusebenzisa umshini wokubala wesayensi ukuze uthole imiphumela enembile.
6. Amacala akhethekile oMthetho we-Cosines: unxantathu wesokudla nama-isosceles
6. Amacala akhethekile oMthetho we-Cosines: unxantathu wesokudla nama-isosceles
Umthetho we-Cosines, ohlobanisa izinhlangothi zikanxantathu nama-engeli abhekene, iyithuluzi elinamandla ekuxazululeni izinkinga zejiyomethri. Nokho, kunezimo ezikhethekile lapho lo mthetho ungenziwa ube lula futhi izibalo zenziwe zibe lula. Kulesi sihloko, sizogxila ezimweni ezimbili: unxantathu ongakwesokudla kanye nonxantathu we-isosceles.
Unxantathu wesokudla
Unxantathu ongakwesokudla yilowo one-engeli eyodwa yangaphakathi 90 degree. Kulesi simo, uMthetho weCosine wehliselwa kufomula eyaziwa kakhulu yePythagoras. Ukuze sithole ukukalwa kolunye lwezinhlangothi, kufanele sisebenzise ifomula:
a² = b² + c²
Lapho u-“a” eyi-hypotenuse (uhlangothi olude kakhulu lukanxantathu) kanye no-“b” kanye no-“c” kuyimilenze (ezinye izinhlangothi ezimbili). Le fomula iwusizo kakhulu ezinkingeni ezibandakanya ubude bezinhlangothi zikanxantathu ongakwesokudla, njengoba yenza izibalo ezidingekayo zibe lula.
Unxantathu we-Isosceles
Unxantathu we-isosceles yilowo onezinhlangothi ezimbili ezinobude obufanayo. Kulokhu, uMthetho wamaCosine wenziwa lula nakakhulu. Uma sibazi ubude bezinhlangothi ezimbili ezilinganayo (a) kanye ne-engeli eyakhiwe yizo (θ), singathola ubude bohlangothi olusele (b) sisebenzisa ifomula elandelayo:
b = 2a * cos(θ / 2)
Le fomula iwusizo uma sifuna ukunquma ubude bolunye lwezinhlangothi kunxantathu we-isosceles ngaphandle kokuthi sisebenzise ifomula evamile yoMthetho wamaCosine. Ikuvumela ukuba wenze izibalo zibe lula futhi uthole imiphumela enembile ngokuphumelelayo.
7. Ukuxazulula izivivinyo ezingokoqobo kusetshenziswa uMthetho wamaCosine
Ukuxazulula izivivinyo ngokoqobo usebenzisa uMthetho wamaCosine, kubalulekile ukulandela lezi zinyathelo ezilandelayo:
- Hlaziya inkinga: Funda isitatimende sokuzivocavoca ngokucophelela ukuze uqonde ukuthi yini ebuzwayo futhi ucace ngedatha enikeziwe.
- Bona izakhi: Thola izinhlangothi nama-engeli kanxantathu okukhulunywa ngawo bese uwanika izinhlamvu ezihambisanayo noma izimpawu.
- Sebenzisa ifomula: Umthetho we-Cosines usungula ukuthi isikwele sohlangothi olulodwa lukanxantathu silingana nesamba sezikwele zezinye izinhlangothi ezimbili, khipha umkhiqizo ophindwe kabili wobukhulu bezinhlangothi ezishiwo ophindwe nge-cosine ye-engeli ephambene. . Sisebenzisa le fomula, singakwazi ukuxazulula umsebenzi isinyathelo ngesinyathelo.
Kubalulekile ukukhumbula ukuguqula noma iyiphi i-engeli evezwe ngamadigri ibe ama-radians ngaphambi kokwenza izibalo. Izibali zesayensi noma amathuluzi aku-inthanethi nawo angasetshenziswa ukwenza izibalo ezidingekayo ze-trigonometric.
Isibonelo sinikezwe ngezansi ukukhombisa inqubo:
- Ake sithi sinonxantathu u-ABC, lapho uhlangothi u-a lukala amayunithi angu-8, uhlangothi u-b lukala amayunithi angu-10, ne-engeli C ohlangothini oluphambene no-c lukala u-45°.
- Sihlonza izakhi: a = 8, b = 10, kanye ne-engeli C = 45°.
- Sisebenzisa ifomula: c² = a² + b² – 2ab * cos(C)
- Sifaka esikhundleni samanani aziwayo: c² = 8² + 10² – 2(8)(10) * cos(45°)
- Sibala i-cos(45°) = √2 / 2 ≈ 0.707
- Siqhubeka nefomula: c² ≈ 64 + 100 – 2(8)(10) * 0.707
- Senza imisebenzi: c² ≈ 64 + 100 - 113 ≈ 51
- Ekugcineni, sinquma inani lika-c ngokuthatha impande eyisikwele yokuthi zombili izinhlangothi: c ≈ √51 ≈ amayunithi angu-7.14
Ngokulandela lezi zinyathelo nokugcina indlela eqinile, kungenzeka ukuxazulula ngempumelelo izivivinyo ezisebenzayo usebenzisa uMthetho wamaCosine.
8. Ukusetshenziswa koMthetho we-Cosines ekuzulazuleni olwandle kanye nesayensi yezinkanyezi
I-Law of Cosines iyithuluzi eliyisisekelo elisetshenziswa ekuzulazuleni olwandle kanye nesayensi yezinkanyezi ukuze kubalwe amabanga nama-engeli ngonxantathu abangewona kwesokudla.
Ekuzulazuleni kwasolwandle, uMthetho we-Cosines usetshenziswa ukunquma ibanga nesiqondiso phakathi kwamaphoyinti amabili kumephu ye-nautical. Ukwazi ama-engeli nobude bezinhlangothi zikanxantathu okwakhiwa amaphuzu okuqala nawokuqeda kuvumela amatilosi ukuba ahlele imizila ephumelelayo futhi agweme izithiyo. Ukuze usebenzise lo mthetho, kuyadingeka ukuthi ube nolwazi olunembile mayelana nezixhumanisi zendawo zamaphoyinti futhi usebenzise amafomula athile abandakanya ukusetshenziswa kwe-cosine.
Ku-astronomy, uMthetho we-Cosines usetshenziselwa ukubala ibanga eliphakathi kwezindikimba ezimbili zasemkhathini, njengamaplanethi noma izinkanyezi. Ukwazi la mabanga kubalulekile ukuze unqume indawo yakho emkhathini futhi ubikezele ukunyakaza kwakho. Izazi zezinkanyezi zisebenzisa amafomula asekelwe kuMthetho we-Cosines ukubala la manani, ukuhlanganisa izilinganiso zama-engeli namabanga atholwe ngezibonakude ezinamandla. Ukuze uthole imiphumela enembayo, kubalulekile ukusebenzisa idatha ethembekile nokusebenzisa izibalo ngokunembile nangendlela efanele.
Kafushane, uMthetho we-Cosines uyithuluzi elibalulekile ekuzulazuleni olwandle kanye nesayensi yezinkanyezi yokubala amabanga nama-engeli ngonxantathu abangebona kwesokudla. Ukusetshenziswa kwayo kudinga ulwazi lwamafomula athile kanye nokusetshenziswa kwedatha enembile. Kokubili amatilosi nezazi zezinkanyezi basebenzisa lo mthetho ukuze benze izibalo ezibalulekile emikhakheni yabo ehlukene futhi bathole imiphumela ethembekile.
9. Ukusetshenziswa koMthetho wamaCosine ukuze kunqunywe amabanga nobude
Umthetho we-Cosines uyindlela ewusizo kakhulu yokunquma amabanga nobude ezinkingeni zejometri. Lo mthetho usetshenziswa lapho kwaziwa ubude bezinhlangothi ezimbili kanye ne-engeli phakathi kwazo, noma lapho kwaziwa ubude bezinhlangothi ezintathu zikanxantathu. Ngezansi incazelo yesinyathelo nesinyathelo sendlela yokusebenzisa lo mthetho ukuxazulula inkinga.
1. Okokuqala, thola idatha oyinikezwe yona kanye nedatha eceliwe. Qiniseka ukuthi ubhala yonke into ngeyunithi efanayo yokulinganisa. Uma ama-engeli angamadigri, waguqulele kuma-radians.
2. Sebenzisa uMthetho wamaCosine ukuze uthole inani elingaziwa. Ifomula evamile yoMthetho weCosines ithi: c² = a² + b² – 2ab*cos(C). Lapho u-'c' kuwubude obungaziwa, 'a' kanye no-'b' ubude obaziwayo, futhi 'C' i-engeli phakathi kwezinhlangothi ezaziwayo. Uma uzazi izinhlangothi ezintathu zikanxantathu, ungasebenzisa ifomula ukuze uthole i-engeli engaziwa: i-cos(C) = (a² + b² – c²) / (2ab).
10. Ukusetshenziswa koMthetho wamaCosine ezinkingeni zangempela zokuphila kwansuku zonke
Kulesi sigaba, sizokukhombisa ezinye. I-Law of Cosines iyithuluzi lezibalo elisivumela ukuba sibale ubude bohlangothi olulodwa lukanxantathu lapho sazi ezinye izinhlangothi ezimbili kanye ne-engeli ebhekene nalolo hlangothi.
1. Isivivinyo 1: Ake sithi sifuna ukunquma ibanga phakathi kwamaphoyinti amabili emephini. Njengoba sifinyelela kuphela imephu enezinhlangothi ezimbili, asikwazi ukukala ibanga ngomugqa oqondile. Kunalokho, kufanele sisebenzise uMthetho wamaCosine. Ukuxazulula le nkinga, kumelwe siqale sikhombe izinhlangothi ezimbili ezaziwayo kanye ne-engeli ebhekene nohlangothi olungaziwa. Okulandelayo, sisebenzisa ifomula ye-Law of Cosines ukuthola ubude bohlangothi olungaziwa.
2. Isivivinyo sesi-2: Ake sithi wakha irempu ukuze ungene endaweni ephakeme. Uyabazi ubude berempu nobude okufanele ikhuphukele kubo, kodwa udinga ukunquma i-engeli irempu okufanele ibe yiyo ukuze udale ukuhlehla okufanele. Ukuxazulula le nkinga, singasebenzisa uMthetho wamaCosine. Ngokwazi ubude berempu nobude, singathola i-engeli ebhekene nerempu sisebenzisa ifomula yoMthetho we-Cosines. Lokhu kuzosivumela ukuthi sakhe irempu enethambeka elifanele.
3. Isivivinyo sesi-3: Ohambweni lomkhumbi, ufuna ukubala ibanga phakathi kwamaphoyinti amabili olwandle. Unokufinyelela ku-GPS ekunikeza i-latitude nobude bawo womabili amaphuzu. Nokho, amaphuzu awekho emgqeni oqondile futhi awukwazi ukukala ibanga ngokuqondile kumephu. Ukuxazulula le nkinga, ungasebenzisa uMthetho we-Cosines. Usebenzisa ifomula yoMthetho we-Cosine, ungakwazi ukubala ibanga phakathi kwamaphoyinti amabili usebenzisa izixhumanisi zawo ze-latitude ne-longitude.
Ukusetshenziswa koMthetho wamaCosine ezinkingeni zangempela zokuphila kwansuku zonke kusinikeza ithuluzi elinamandla lezibalo lokuxazulula izimo ezingokoqobo. Ngokulandela lezi zivivinyo kanye nendlela echaziwe, uzokwazi ukubala ubude bezinhlangothi ezingaziwa, unqume ama-engeli futhi ulinganise amabanga ezimweni ezehlukene. Hlola lezi zivivinyo futhi uthole izindawo zokuhlala ezintsha ku-geometry kanye ne-trigonometry!
11. Inselele yezinkinga ezithuthukile ezidinga ukusetshenziswa koMthetho wamaCosine
Ukuxazulula izinkinga ezithuthukisiwe ezidinga ukusetshenziswa koMthetho wamaCosine, kubalulekile ukulandela uchungechunge lwezinyathelo ukuze uthole isisombululo esifanele. Nansi inkomba yesinyathelo ngesinyathelo ukukusiza ukuthi ubhekane nale nselele:
Isinyathelo se-1: Qonda inkinga ngokujula. Funda isitatimende ngokucophelela futhi uqiniseke ukuthi uyakuqonda lokho okucelwa kuwe nokuthi yiluphi ulwazi olunikezwayo. Khomba ukuthi iyiphi i-engeli nezinhlangothi ozaziyo nokuthi yiziphi odinga ukuzithola.
Isinyathelo se-2: Sebenzisa uMthetho wamaCosine. Lo mthetho uthi isikwele sohlangothi olulodwa lukanxantathu silingana nesamba sezikwele zezinye izinhlangothi ezimbili kukhishwe kabili umkhiqizo walezo zinhlangothi ngokuphindwe kabili kune-cosine ye-engeli ephambene. Sebenzisa le fomula ukuze uthole isibalo ongakwazi ukusixazulula ukuze uthole inani elingaziwa.
Isinyathelo se-3: Rarulula isibalo usebenzisa imiqondo yama-engeli kanye ne-trigonometry. Kungase kudingeke ukuthi usebenzise i-trigonometric identity noma usebenzise imisebenzi ye-trigonometric ephambene ukuze uthole inani le-engeli engaziwa noma uhlangothi. Uma kunesidingo, sebenzisa umshini wokubala wesayensi ukuze wenze izibalo.
12. Izinzuzo nemikhawulo yokusebenzisa uMthetho wamaCosine ekubalweni kwe-trigonometric
I-Law of Cosines iyithuluzi elinamandla emkhakheni we-trigonometry, esetshenziselwa ukuxazulula onxantathu abangakwesokudla. Inochungechunge lwezinzuzo kanye nokulinganiselwa okubalulekile okufanele kucatshangelwe lapho kwenziwa izibalo ze-trigonometric.
Enye yezinzuzo ezinkulu zokusebenzisa uMthetho wamaCosine ukuguquguquka kwawo. Ngokungafani nezinye izindlela, lo mthetho ungasetshenziswa ezinhlotsheni ezahlukene zonxantathu, kungakhathaliseki ukuthi onxantathu aba-btuse, ababukhali noma abangakwesokudla. Ukwengeza, ikuvumela ukuthi uxazulule onxantathu hhayi kuphela ngobude obuhlangothini, kodwa futhi nakuma-engeli. Lokhu kunikeza ukuguquguquka lapho kubalwa kokubili ubude obusemaceleni nama-engeli angaziwa kanxantathu.
Kodwa-ke, kubalulekile ukusho imikhawulo ethile yoMthetho wamaCosine. Okokuqala, ukusetshenziswa kwayo kungaba yinkimbinkimbi kunezinye izindlela ze-trigonometric, ikakhulukazi ezimeni lapho kunama-engeli amaningi angaziwa noma izinhlangothi. Ukwengeza, ukunemba kwemiphumela etholwe ngoMthetho we-Cosines kungathinteka ezimweni lapho ama-engeli kanxantathu mancane kakhulu noma amakhulu kakhulu, angabangela amaphutha abalulekile ekubaleni.
13. Ubudlelwano phakathi koMthetho we-Cosines namanye amafomula ejometri ye-trigonometric
- Umthetho we-Cosine: Umthetho we-Cosines uyifomula eyisisekelo ku-trigonometric geometry esivumela ukubala uhlangothi noma i-engeli yanoma yimuphi unxantathu. Lo mthetho uthi isikwele sohlangothi olulodwa lukanxantathu silingana nesamba sezikwele zezinye izinhlangothi ezimbili, khipha kabili umkhiqizo walezi zinhlangothi ngokuphindwe kabili i-cosine ye-engeli ebhekene nohlangothi olushiwo.
- Ubudlelwano ne-Pythagorean Theorem: I-Law of Cosines iwukujwayelekile kweTheorem ye-Pythagorean, njengoba lapho unxantathu ungunxande futhi enye yama-engeli awo angaphakathi ilinganisa ama-degree angama-90, i-cosine yaleyo engeli izolingana noziro futhi ifomula yoMthetho weCosine yehliselwa kufomula. ye-Pythagorean Theorem.
- Izibonelo zohlelo lokusebenza: Umthetho we-Cosines uwusizo kakhulu ezimeni lapho wazi khona amanani ezinhlangothi ezimbili zikanxantathu kanye ne-engeli ephakathi kwazo, noma uma wazi amanani ezinhlangothi ezintathu futhi ufuna ukubala enye yama-engeli. Isibonelo, uma sinonxantathu onezinhlangothi zobude obungu-5, 7 kanye namayunithi angu-9, singasebenzisa uMthetho we-Cosines ukubala i-engeli ephambene nobude obungu-7. Ukwenza lokhu, sisebenzisa ifomula yoMthetho we-Cosines. , esikhundleni samanani aziwayo kanye nokuxazulula isibalo esiwumphumela.
14. Iziphetho ngokubaluleka nokuba wusizo koMthetho wamaCosine emikhakheni eyahlukene yokufunda nokwenza.
Kafushane, uMthetho we-Cosines uyithuluzi eliyisisekelo emikhakheni eyahlukene yokufunda nokusebenza, njenge-trigonometry, i-physics, ubunjiniyela kanye ne-cartography. Lo mthetho usivumela ukuthi sixazulule izinkinga ezibandakanya onxantathu abangakwesokudla, okusinika indlela eqondile yokubala izinhlangothi noma ama-engeli angaziwa. Ifomula yayo evamile, c^2 = a^2 + b^2 – 2ab * cos(C), isinika isisekelo esiqinile sokubhekana nezimo ezihlukene zezibalo nezejiyomethri.
Ukusebenziseka koMthetho we-Cosines kusemandleni awo okuxazulula onxantathu ngokusekelwe olwazini oluyingxenye, oluwusizo ikakhulukazi ezimeni lapho kungaziwa khona zonke izinhlangothi noma ama-engeli. Ngaphezu kwalokho, ngenxa yalo mthetho, singakwazi ukunquma ukuthi kukhona unxantathu nokuma kwawo, ngisho nasezimweni lapho i-Theorem ye-Pythagorean ingasetshenziswa khona. Ngakho-ke, ukusetshenziswa kwayo kudlulela ezinkingeni zokuhamba, i-geolocation, ukwakheka kwesakhiwo, ukubala ngamandla nezinye izindawo eziningi.
Sengiphetha, uMthetho wamaCosine wembulwa njengethuluzi elibalulekile neliguquguqukayo emikhakheni eyahlukene yokufunda nokwenza. Ifomula yayo isivumela ukuthi sixazulule onxantathu abangakwesokudla ngokunembile nangempumelelo, okusinika ukuqonda okujulile kobudlelwane phakathi kwezinhlangothi zabo nama-engeli. Ukusetshenziswa koMthetho we-Cosines kusisiza ukuba senze izibalo ezinembe kakhudlwana futhi sihlaziye ezindaweni ezihlukahlukene njengokwakha amamephu, ukunquma amabanga nama-engeli kusayensi yezinkanyezi, nokuxazulula izinkinga zejiyomethri kwezobunjiniyela. Kubalulekile ukwazi kahle lo mthetho ukuze sikwazi ukubhekana ngempumelelo nezimo ezehlukene zezibalo nezejiyomethri emsebenzini wethu wezemfundo nowenziwayo.
Sengiphetha, uMthetho we-Cosines uyithuluzi lezibalo eliyisisekelo emkhakheni we-trigonometric ovumela onxantathu abangakwesokudla ukuthi baxazululwe ngokunembile nangempumelelo. Ukusetshenziswa kwayo kubalulekile emikhakheni ehlukahlukene, njengobunjiniyela, i-physics kanye nokuhamba.
Ukusebenzisa i-Law of Cosine formula, kungenzeka ukubala ubude bohlangothi olungaziwa lukanxantathu, kanye nokunquma ama-engeli angaphakathi. Lokhu kufezwa ngokusebenzisa izilinganiso zezinhlangothi nama-angles awaziwayo, okwenza kube lula ukuxazulula izinkinga eziyinkimbinkimbi ku-geometry yendiza.
Ngochungechunge lwezibonelo nokuzivocavoca okusebenzayo, sibonise indlela yokusebenzisa uMthetho wamaCosine ukuxazulula izinkinga zangempela. Kusukela ekunqumeni ibanga eliphakathi kwamaphoyinti amabili endizeni ukuya ekubaleni umzila wento Ekuhambeni, leli thuluzi lezibalo elinamandla linikeza izixazululo ezinembile nezithembekile.
Ukuqonda uMthetho wamaCosine kubalulekile kunoma yimuphi umfundi noma uchwepheshe ofuna ukungena emhlabeni othakazelisayo we-trigonometry. Ngokufunda kahle le fomula, uthola ikhono lokuxazulula izinkinga zejiyomethri eziyinkimbinkimbi, uthuthukise amaphrojekthi wobunjiniyela, futhi wenze izibalo ezinembe kakhudlwana emikhakheni eyahlukene.
Kafushane, uMthetho we-Cosines umele insika eyisisekelo ku-trigonometry futhi unikeza ochwepheshe ithuba lokuxazulula izinkinga zejometri ngendlela eqinile. Ukusetshenziswa kwayo nokuzijwayeza njalo kuqinisa amakhono ezibalo futhi kunikeze umbono ojulile womhlaba osizungezile. Ngaphandle kokungabaza, lo mthetho uyithuluzi elinamandla lentuthuko yesayensi nezobuchwepheshe emphakathini wethu wamanje.
Ngingu-Sebastián Vidal, unjiniyela wekhompyutha ozifelayo ngobuchwepheshe kanye ne-DIY. Ngaphezu kwalokho, ngingumdali we tecnobits.com, lapho ngabelana khona ngezifundo zokwenza ubuchwepheshe bufinyeleleke kakhudlwana futhi buqonde wonke umuntu.